R
: http://cran.r-project.org/doc/manuals/R-intro.pdfR
reference card: http://cran.r-project.org/doc/contrib/Short-refcard.pdfrmarkdown
and some packages: https://posit.co/resources/cheatsheets/Enter into R console:
?exp # opens documentation for 'exp' function
??exponential # searches documentation for "exponential"
Create vectors with c
function:
s <- c(1, 2, 3, 4)
s
## [1] 1 2 3 4
Create matrices with matrix
function:
A <- matrix(1:9, nrow = 3, ncol = 3)
B <- matrix(c(1, 2, 2, 3, 4, 5), nrow = 2)
print(A)
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
print(B)
## [,1] [,2] [,3]
## [1,] 1 2 4
## [2,] 2 3 5
Use cbind
and rbind
to combine vectors and
matrices:
a <- cbind(1:3, 6:8)
print(a)
## [,1] [,2]
## [1,] 1 6
## [2,] 2 7
## [3,] 3 8
C <- rbind(A, B)
print(C)
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
## [4,] 1 2 4
## [5,] 2 3 5
Generate random data from the normal distribution with
rnorm
function:
x <- rnorm(100, mean = 5, sd = 2)
mean <- mean(x)
std <- sd(x)
head(x)
## [1] 4.900988 4.940206 3.258242 5.483131 2.901180 6.743156
print(paste("Mean:", mean))
## [1] "Mean: 5.28215373900054"
print(paste("Standard deviation:", std))
## [1] "Standard deviation: 2.18814066784594"
Install packages with install.packages
function:
install.packages("ggplot2")
Load them with library
function:
library("cluster")
## generate 25 objects, divided into 2 clusters.
x <- rbind(
cbind(rnorm(10, 0, 0.5), rnorm(10, 0, 0.5)),
cbind(rnorm(15, 5, 0.5), rnorm(15, 5, 0.5))
)
clusplot(pam(x, 2))
## add noise, and try again :
x4 <- cbind(x, rnorm(25), rnorm(25))
clusplot(pam(x4, 2))
square <- function(x) {
x^2
}
square(3)
## [1] 9
s <- c(1, 2, 3, 4)
square(s)
## [1] 1 4 9 16
square(B)
## [,1] [,2] [,3]
## [1,] 1 4 16
## [2,] 4 9 25
for (i in 1:10) {
if (i == 1) {
print(paste("The first number is", i))
} else {
print(paste("The next num is", i))
}
}
## [1] "The first number is 1"
## [1] "The next num is 2"
## [1] "The next num is 3"
## [1] "The next num is 4"
## [1] "The next num is 5"
## [1] "The next num is 6"
## [1] "The next num is 7"
## [1] "The next num is 8"
## [1] "The next num is 9"
## [1] "The next num is 10"
while (i < 10) {
print(paste("The next num is", i))
i <- i + 1
}
getwd() # get working directory --> setwd("path") = set working directory
## [1] "c:/Users/smoli/Data/Matfyz/05-III-ZS/Multivariate-linear-analysis/labs"
music <- read.csv("datasets/music.csv")
head(music, 10)
## X Artist Type LVar LAve LMax LFEner LFreq
## 1 Dancing Queen Abba Rock 17600756 -90.00687 29921 105.9210 59.57379
## 2 Knowing Me Abba Rock 9543021 -75.76672 27626 102.8362 58.48031
## 3 Take a Chance Abba Rock 9049482 -98.06292 26372 102.3249 124.59397
## 4 Mamma Mia Abba Rock 7557437 -90.47106 28898 101.6165 48.76513
## 5 Lay All You Abba Rock 6282286 -88.95263 27940 100.3008 74.02039
## 6 Super Trouper Abba Rock 4665867 -69.02084 25531 100.2485 81.40140
## 7 I Have A Dream Abba Rock 3369670 -71.68288 14699 104.5969 305.18689
## 8 The Winner Abba Rock 1135862 -67.81905 8928 104.3492 277.66056
## 9 Money Abba Rock 6146943 -76.28075 22962 102.2407 165.15799
## 10 SOS Abba Rock 3482882 -74.13000 15517 104.3624 146.73700
dim(music)
## [1] 62 8
write.table(music, file = "datasets/music.txt", sep = ";")