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1 Review of Set Theory Basics

We will be dealing with the Zermelo-Fraenkel (ZF) set theory; after adding the
axiom of choice, we obtain the much stronger ZFC theory. Let us first recall some
important axioms and definitions.

As for notation, I always use the symbol C for a proper subset (or subclass)
and C for a general subset (or subclass). I use C only when it is important
that the two sets (or classes) are not equal. Concatenated expressions such as
a€becmean a € b A b € c. I differentiate between the symbol for equality of
two objects “=" and the symbol for the definition of an object “:=". I use the
following notation for defining functions.

e f: A— B isa function with domain A and codomain B.
e f:a+— bdenotes that f maps the set a € A to the set b € B.

I use the terms function, map, and mapping interchangeably.

1.1 Sets and Classes

Definition 1.1 (Class). If ¢(z) is a formula, then the expression {z|p(z)} is
called a class term. It defines the “collection” of all sets x satisfying p(z). We
call this collection the class determined by ¢(z).

Every set is a class but not all classes are sets (take the class of all sets). A
class that is not a set is called a proper class. The major difference between sets
and classes is that classes cannot be members of other classes or sets, while sets
can. We can substitute class terms into logical formulas in place of free variables,
but unlike sets, we cannot quantify them using V and 4. It isn’t hard to show
that for every formula with class terms (but without quantified class variables),
there is an equivalent formula in the base language without class terms.

We will usually denote sets using small letters a, b, ¢, x,y, ... and classes using
capital letters A, B, C', etc. The exception to this are well-ordered sets which will
often be denoted as W. Finally, the class of all sets, also called the universal
class, is denoted by V.

1.2 Axiom Schema of Replacement

Axiom 1.2. When we take any (even a class) map F and a preimage set a, then
the class of images b = F[a] is also a set. Formally, if ¢)(x,y) is a formula, without
free variables ¥, y2 and b, then the formula

(Vz)(Vyr,y2) (U(z,91) A(2,92)) = 11 = 42) =
(Va)(3D) : (Vy) (y €ebe (Jr)(z€an ¢(m,y)))

is an axiom. The formula t(z,y;), resp. ¥(z,y2) are created from o (x,y) by
substituting v, resp. y, for y.

The first part of this axiom says that ¥ (x,y) should behave like a map y =
F(z). In the second part, a denotes the set of preimages and b the set of corre-
sponding images.



1.3 Axiom of Choice

The aziom of choice (AC) is one of the most important principles in modern
mathematics, with profound implications in areas such as analysis or linear al-
gebra. It states that for any collection of nonempty sets, it is possible to choose
exactly one element from each set, even if the collection is infinite. When added
to Zermelo—Fraenkel set theory, it yields the much more powerful ZFC theory.
Many theorems that seem intuitively true, such as every vector space having a
basis, depend on this axiom.

However, the axiom of choice is also controversial, since it leads to counter-
intuitive results, such as the well-ordering principle, which claims that every set
can be well-ordered, or the Banach—Tarski paradox, which provides a way to
decompose a solid ball into finitely many pieces and reassemble them into two
identical copies of the original.

Definition 1.3 (Choice function). A choice function (or a selector) on the set x
is any function f :x — (Jz such that

(Vtea)(t £ = f(t) €L).

We can WLOG assume that the choice function is defined on z \ {@} and all
t € Dom(f) satisfy f(t) € t.

Axiom 1.4 (Axiom of Choice). Every set has a choice function.

An equivalent formulation which sounds even more intuitive is that the Carte-
sian product of a nonempty indexed family of nonempty sets is nonempty. Other
famous conditions equivalent [[] to the axiom of choice are the well-ordering prin-
ciple or Zorn’s lemma.

Showing the equivalence of the nonempty Cartesian product statement isn’t
hard. The other two conditions are much more difficult and require the use of
transfinite induction. We prove their equivalence in Sections and [2.5]

1.4 Natural Numbers and the Axiom of Infinity
We use Von Neumann ordinals, meaning that natural numbers are defined as
0=0,1:={0},2:={0,1},...,n+1:={0,1,...,n} =nU{n}.

Definition 1.5. The successor function is a mapping S : V — V defined as
v — v U {v}. For convenience, we write v + 1 := S(v) = v U {v}.

Definition 1.6. A set w is inductive if 0 € w and for all n € w alson + 1 € w.
Axiom 1.7 (Axiom of Infinity). There exists an inductive set.

Definition 1.8. We define the set of all natural numbers as the C—smallest
inductive set. Or equivalently, as [{w | w is inductive}. We denote it by w.

1“The Axiom of Choice is obviously true, the well-ordering principle obviously false, and
who can tell about Zorn’s lemma?” — Jerry Bona



1.5 Well-Orderings and Initial Segments

Let us recall a very important definition, the notion of well-ordered sets.
Definition 1.9 (Ordering). A binary relation R on the class X is a
o trichotomy if for all z,y € X, either x =y, or x Ry, or y Rz,

e strict order if it is anti-reflexive, strongly anti-symmetric, and transitive
on X; (note that strong anti-symmetry follows from the other two),

e (partial) order if it is reflexive, weakly anti-symmetric, and transitive on X,
e total (or linear) order if it is a trichotomous partial order on X.

If R is an ordering, then instead of x Ry we write z <g y and we call (X, <g)
an ordered class. Similarly, if R is a strict ordering, then we write © <g y and we
call (X, <g) a strictly ordered class.

Note that we can easily create a strict ordering <y from <p and vice versa. For
this reason, we will not define properties for both strict and non-strict orderings
separately because one implicitly defines the other.

Definition 1.10. We call an element of an ordered class (X, <g) minimal if
there is no smaller one, and we call it a minimum if it is smaller than all others.
If a minimum exists, we denote it by min<, X. Similarly, we define a mazimal
and mazimum element.

Observation 1.11. Every minimum is minimal. Furthermore, if R is a total
order, then there is at most one minimal element, and if it exists, then it is also
the minimum. There is always at most one minimum.

Definition 1.12 (Well-ordering). An ordered class (A, <g) is well-ordered if
every non-empty subset of A has a minimum. We can similarly define a strict
well-ordering.

Notice that every well-ordered class is totally ordered since we can take any
two elements, and one of them has to be the minimum and is therefore smaller.

Observation 1.13. The well-ordering property is hereditary. That is, if X 1is
well-ordered by <g, then every Y C X is also well-ordered by <g.

Definition 1.14 (Lower part and subset). Let (A, <g) be a (strictly) ordered
class. A subclass X C A is a lower part of A if

(Vexe X)(Vae A)(a<px=acX).

Additionally, if X is a set, we call it a lower subset of A, and if X # A, then we
call it a proper lower part, or proper lower subset of A.

Lemma 1.15. Let (W, <g) be a (strictly) well-ordered set and suppose that X
is a proper lower subset of W. Then there exists a unique x € W such that X is
equal to the set {y € W |y <r x}. We denote this set as (+,x).



Proof. We define = as the minimum of W\ X. Then every y <g x belongs to X,
so (¢—,z) € X. We also want the opposite inclusion. For contradiction, suppose
there is a y € X such that y ¢ (,z). If y £ z, then necessarily x <p y. But
this means that * € X because X is a lower subset and y € X. But this is a
contradiction since x ¢ X. O

Definition 1.16 (Initial segment). If (W, <g) is a (strictly) well-ordered set,
then we call its proper lower subsets initial segments instead. We denote the
unique initial segment of W determined by x € W as

) ={ye Wy <gzx}.

It contains all the elements of W from the minimum of W until z, but not z
itself.

Observation 1.17. Note that © <py <= (,z) C (,y).

2 Ordinal Numbers

Informally, ordinal numbers are a way to generalize natural numbers. We will
first do a quick recap of ordinal number basics and then prove a theorem that
deeply links ordinals and well-ordered sets.

2.1 Ordinals as a Generalization of Naturals

Definition 2.1. A class X is called transitive if for all z € X we have x C X.
Or equivalently, if for every x,y such that y € x € X we have y € X.

Theorem 2.2. Fvery natural number and the set of all natural numbers w is
transitive and (strictly) well-ordered by the membership relation €.

Remark. From now on, we will denote the (strictly) well-ordered set (w, €) as
(w, <) instead and write n < m instead of n € m when talking about natural
numbers.

Definition 2.3 (Ordinal numbers). A set «v is an ordinal number if it is transitive
and (strictly) well-ordered by the membership relation €. We denote the class of
all ordinal numbers by On.

Observation 2.4. Every n € w and w itself is an ordinal number.

Theorem 2.5. The class On itself is transitive and (strictly) well-ordered by €.
This implies that it is not a set, because otherwise On € On. Furthermore, any
proper class X that is transitive and well-ordered by € s identical to On.

As for notation, we will use symbols «, 3,7,... to denote ordinals and the
symbol < to compare them. That is, we write 5 < « instead of § € a.

Observation 2.6. If § < «, then f C « and B is an initial segment of .
Additionally, « = (¢, ).



Definition 2.7. If « is an ordinal, then we call all § < « the predecessors of a.
The successor of a is the ordinal o + 1 = aw U {a}. We say that « is the direct
predecessor of o + 1.

Remark. 1t is easy to show that o+ 1 is the smallest ordinal larger than «.
Definition 2.8. We say that an ordinal number « is an
e isolated (or successor) ordinal if & = 0 or « has a direct predecessor,
e [imit ordinal otherwise.

Example. Every n € w is isolated, w is limit, and w + 1 is isolated again.

2.2 Ordinals as Types of Well-Ordered Sets

The definition of ordinals we just saw is one by Von Neumann from 1923. How-
ever, Cantor originally defined ordinals in 1895 as types of well-ordered sets. We
will prove a theorem linking these two concepts together.

Lemma 2.9. Every proper lower part of (On, <) is an ordinal number.
Proof. Let X be a proper lower part of On. Then

1. X is transitive. Suppose a € € X, that is a < € X. Because X is a
lower part we have a € X.

2. X is well-ordered by € because On is well-ordered by € and X C On.

We also need to argue that X is a set. If it were a proper class, then by Theo-
rem it would be the entire On, but X C On. O

Definition 2.10 (Isomorphism). Let (A, <g) and (B, <g) be ordered classes.
A bijection F': A — B is an order-isomorphism of (A, <g) and (B, <g) if

(Vo € A)(z <py < F(z) <s F(y)).

Because we will not be dealing with other types of isomorphisms, we will usually
simply say somorphism instead of order-isomorphism.

Theorem 2.11 (About comparing well-orderings). If (Wy, <y) and (Ws, <5) are
well-ordered sets, then exactly one of the following holds:

(1) either Wy and Wy are isomorphic, or
(2) Wi is isomorphic to an initial segment of Wy, or
(3) Wy is isomorphic to an initial segment of W7.
In each case, the isomorphism is unique.
Corollary 2.12. No two distinct ordinal numbers can be isomorphic.

Proof. Suppose a < 3, that is a € § and a C . Clearly « is an initial segment
of 5. This means that we are in case of the previous theorem. m
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Theorem 2.13 (About the type of well-ordering). Fvery well-ordered set is iso-
morphic to a unique ordinal number, which is called the type of the ordering.

The following proof is taken from [2].

Proof. Let (W, <g) be a well-ordered set. We want to show that there is a unique
ordinal (e, <) isomorphic to it. Define X as the set of all x € W for which (+, z)
is isomorphic to an ordinal. As no two distinct ordinals are isomorphic, this
ordinal is uniquely determined, and we denote it a,; we denote the isomorphism
as iy : (—,7) = ag.

Suppose that there exists a set S such that S = {a, |z € X} C On. Because
we assume that S is a set, then S C On. We claim that S is a proper lower part
of (On, <), and therefore by Lemma it is an ordinal, let’s call it «. Indeed,
suppose [ < a, € 5, we want § € S. Note that § is an initial segment of a,.
This implies that i, '[3] is an initial segment of W. Because W is well-ordered,
i71[A] is equal to (+—,b) for some b € W, (using Lemmal[L.15). So 8 = oy, € S by
the definition of S. More precisely, i, [ (¢, b) is an isomorphism between (+,b)
and 5. We will argue why we can make the assumption that S is a set later.

A similar argument shows that X is a lower subset of W. To show this,
suppose © € X and take y € a such that y <z x. We want y € X. We have
y <g x; therefore (+—,y) is an initial segment of (<, z). Because isomorphisms
conserve all ordering properties, i, | (¢—,y) is an isomorphism between (¢ ,y)
and an initial segment of «,. By Lemma [2.9 this is an ordinal; by our previous
notation, a,. Therefore y € X.

We conclude that either X = W or X = (+—,¢) C W for some ¢ € W, (using
Lemma [1.15). We now define a function f : X — S = a by f: 2 — «a,. From
the definition of S and the fact that < y implies (<—,z) C (-, y) and therefore
a, < oy, it is obvious that f is an isomorphism of (X, <g) and (a, <). If

e X = («,c), then by the definition of the set X, ¢ € X because (+ ,c¢)
is isomorphic to an ordinal o, = «. But this is a contradiction because
c¢ (,c)=X.

e Therefore X = W and « is the sought-after ordinal isomorphic to (W, <g).

The uniqueness of a follows from the simple observation that if W was iso-
morphic to two distinct aq and «s, then by transitivity of isomorphism, a; would
be isomorphic to as, which is impossible by Corollary [2.12]

This would complete the proof if we were justified to make the assumption
that the class S is a set and therefore an ordinal. In fact, we have to use the
axiom of replacement to guarantee it. If we assume this axiom then S is a set
because it is the image of the set X by the map f. ]

Exercise. Is there a well-ordered proper class not isomorphic to (On, <)?

2.3 Transfinite Induction and Recursion

In mathematics, we often use induction on the natural numbers to prove state-
ments, and we can use recursion such as f(0) = 1 and f(n) =n- f(n —1) to
define functions. We will now show how to generalize this to all ordinals.



Theorem 2.14 (Transfinite Induction Principle). Let A C On be a class such
that for all ordinals o € On we have « T A = « € A, or in other words

(VB<a)(feAd) = (e A). (2.1)
Then A = On.

Equivalently, assume that o(x) is a property, and for all ordinals «:
If p(B) holds for all p < a, then p(«).

Then () holds for all ordinals c.

Proof. Suppose that v € On\ A and let S = {a < 7y]a ¢ A}. Because ordinals
are well-ordered, the set S has a minimum element «. Since every § < « is in A,
it follows by that a € A, which is a contradiction.

The equivalence can be easily seen by taking the class A = {x|p(x)} or the
property p(z) =z € A. O

We can also formulate the principle separately for isolated and limit ordinals,
which allows us to use the transfinite induction principle in a form closer to the
usual formulation of the induction principle for the naturals.

Theorem 2.15 (Transfinite Induction Principle II). Let A C On be a class
satisfying

(a) 0 € A,
(b)) aec A=a+1€A, ... this is just induction on w

(¢) if a is a limit ordinal and (VB < a)(5 € A), then a € A.

Then A = On. Note that we can again easily reformulate this in terms of a
property ¢(x).

Proof. We need to show that these three assumptions imply . So let a be
an ordinal such that § € A for all 8 < a. If a =0, then a € A by Ifa#0
is isolated, that is if there is a § < « such that o = 8 + 1, we know that g € A,
so a € A by @ If « is a limit ordinal, we have @ € A by . m

We can use transfinite induction to prove properties of certain infinite struc-
tures. On the other hand, transfinite recursion—the technique described in the
following theorem—allows us to construct various infinitely complex structures
and define functions in a recurrent fashion.

Theorem 2.16 (About construction by transfinite recursion). If G : V — V is
a class map, then there is a unique class map F : On — V satisfying

F(a) =G(F | a). (2.2)
So we define the image of the next ordinal using its predecessors and their images.

Remark. This should seem a bit suspicious because it looks like we are saying
that for every class GG there exists a class F' that something holds. But we cannot
quantify classes. Well, we can replace the quantification of G by a theorem
schema, one for every GG. And we aren’t really quantifying F' because the following
proof explicitly constructs it.



Remark. The theorem can be equivalently formulated using different recurrences,
for example, as

o F(a)=G(Flo]) = G({F(B)| 8 < a}),
e G:OnxV —=Vand Fla) = G(o, F' | @),
o F(a)is Gi(F(P)) if = B+ 1 is isolated, and Go(Fa]) if « is limit.

Additionally, these transfinite recursion statements are equivalent to the axiom
of replacement.

Proof. We define A as the class of “set approximations” of F. That is set map-
pings f, the domain of which is some ordinal number 3, and that for all o <
we have f(a) = G(f | «). Now we define F' as F' :=JA. Clearly FF C On x V.
We will show that F': On — V is the unique mapping satisfying .

First we show that the approximations of I’ agree. Let f,f’ € A and a €
Dom(f) N Dom(f’). We claim that f(«) = f'(«). Note that Dom(f) N Dom(f")
is an ordinal . For contradiction, suppose that « € ¢ is the smallest ordinal for
which f(a) # f/(a). Then f [ a = f' [ aso f(a) = G(f | a) = G(f' | a) =
f'(«), a contradiction.

Second we verify that F satisfies (2.2)), that is for all @ € Dom(F) we have
F(a) = G(F | a). So let a € Dom(F). It is there due to some f € A satisfying
a € Dom(f) and f(a) = G(f | a). Also, F(a) = f(a) and F | a = f | a.
Therefore, by combining these equalities F'(a) = G(F | ).

Next we show that Dom(F') = On. First we prove that Dom(F) is a lower
part of On. Suppose a € Dom(F'), then it is there thanks to some f € A with
domain § > «. If 8 < a, then also § € § and thus 5 € Dom(F).

According to Lemma [2.9) either Dom(F") = On, which we want, or Dom(F') =
v € On. Suppose for contradiction that Dom(F') = v. Then F is a set because
Dom(F) is a set, Rng(F) is a set using the axiom of replacement, and F C
Dom(f) x Rng(f). This implies that F' € A because its domain is an ordinal and
we have verified that it satisfies the recursive definition property.

Now that F' € A, we define a slightly “longer” function F := FU{(v, G(F))};
note that F' = F [ . Notice that F} € A because Dom(F;) = v+ 1 is an ordinal
and we defined it so that it satisfies the recursive definition property. Because
F =JA, this implies F; C F, but then v € Dom(F;) C Dom(F) = v, which is
a contradiction. We conclude that Dom(F") = On.

Finally, we prove the uniqueness of F'. For contradiction suppose that there
is another mapping F’ # F satisfying this theorem. Because (On, <) is well-
ordered, we can take the smallest ordinal o where F(a) # F'(«). Therefore
Fla=F [aandso Fla) =GF | o) = G(F' | a) = F'(«), which is a

contradiction. O

Exercise. Prove by induction on w that every infinite well-ordered set A, such
that each initial segment (+—,a) is finite, is isomorphic to (w, <).

Hint. Since each (+—,a) is finite, there is a unique n, € w with the same cardi-
nality. The isomorphism we are looking for is f : A — w defined by f : a + n,.

Exercise. Prove by transfinite induction that every well-ordered proper class,
such that each initial segment (+—,a) is a set, is isomorphic to (On, <).
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We will use transfinite recursion to prove the equivalence of the well-ordering
theorem and Zorn’s lemma to the axiom of choice. But transfinite recursion can
also be used to prove some wildly sounding geometrical claims, such as

e R3 is a union of pair-wise disjoint unit circles, or that

e there is a set in R? that intersects every line in exactly two points.

2.4 The Well-Ordering Principle

The well-ordering principle states that every set can be well-ordered. It is also
sometimes referred to as the well-ordering theorem or Zermelo’s theorem.

Principle 2.17 (Well-Ordering Principle). Every set can be well-ordered.
Theorem 2.18. The well-ordering principle is equivalent to the axiom of choice.

Proof. WO = AC. Let A # @ be a set, WLOG @ ¢ A. We want to construct a
selector f: A — |J A such that for all @ € A we have f(a) € a. The well-ordering
principle guarantees a well-ordering < on J A and because every a is a nonempty
subset of [ J A, it has a least element with respect to <. We chose this minimum
as f(a).

AC = WO. Let A # @ be a set. We will use transfinite recursion to label
the elements of A by ordinal numbers and then use the well-order of the ordinals
to define a well-order on A. Let g : P(A) — A be a selector on P(A), assigning
to each nonempty B C A an element b € B. We will want to use transfinite
recursion based on g, so we should extend it to be a class map G : V — V, for
example by defining it to be equal to @ when ¢ is not defined.

We can now use transfinite recursion to define the function F': On — AU{@}
as F(0) = G(A) and F(a) = G(A\ F[a]). This function assigns to each ordinal a
unique element from A until they “run out” (when Fla] = A), and then it assigns
& to all larger ordinals.

Define W as the class of all ordinals « for which Fla] € A. Denote the
restriction of F' to W as Fy : W — A. Plan: first, we show that W itself is
an ordinal. From this, it will follow that Fy is a bijection between W and A,
allowing us to denote the unique ordinal mapped to a € A as «,. Once this is
established, we define a well-ordering R of A as

a<pb = a, <.

This is a well-ordering since (A, <g) is order-isomorphic to (W, <), which is
well-ordered (as W is an ordinal).

Firstly, we claim that W is a set. Indeed, because Fyy is injective, it has an
inverse FI;,l, which maps the set Rng(Fy) € A onto W which is therefore, using
the axiom of replacement, a set. Now we claim that W is a lower subset of On,
and so it is an ordinal (by Lemma [2.9). Suppose a € W, that is Fla] C A, and
let 5 < . Then  C « and F[S] C Fla],so g € W.

To complete the proof, we must show that Fy, : W — A is a bijection. It is
clearly injective. To show that it is surjective, suppose for contradiction that there
exists some b € A\ Fy[W]. Because W is an ordinal number ~, it satisfies the
definition of W (thanks to b) and thus W = v € W, which is a contradiction. [
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2.5 Zorn’s Lemma

Zorn’s lemma is perhaps the most useful application of the axiom of choice outside
set theory. It is also known as the maximality principle, a name that goes back to
the German mathematician Felix Hausdorff, who proved an earlier and equivalent
version of the theorem in 1914 (see [3] for details). The formulation known today
as Zorn’s lemma was introduced in 1935 by another German mathematician, Max
Zorn. However, it had already been independently proven in 1922 by the Polish
mathematician Kazimierz Kuratowski, whom you might know for Kuratowski’s
theorem—a forbidden-graph characterization of planar graphs.

Definition 2.19 (Chain). Let (a, <g) be an ordered set. We call the subset
b C a a chain if b is totally ordered by <g.

Principle 2.20 (Zorn’s Lemma). Every (partially) ordered set containing upper
bounds for every chain necessarily contains at least one maximal element.

There is also a parametrized version of this statement.

Principle 2.21 (Parametrized Zorn’s Lemma). Let A be a (partially) ordered
set containing upper bounds for every chain. Then for every a € A, there is a
maximal element b € A such that a <b.

We can obtain the parametrized version from the unparameterized one by
restricting ourselves to the elements above (or equal to) a. The other direction is
obvious.

Remark. Zorn’s lemma can be made slightly stronger by assuming that only well-
ordered chains have upper bounds. The proof remains virtually unchanged.

Theorem 2.22. The axiom of choice implies Zorn’s lemmoa.

Proof. Let (A, <g) be an ordered set containing upper bounds for each chain
and for contradiction suppose that there is no maximal element. Note that this
implies that every chain in fact has a strict upper bound. If a chain C' had no
strict upper bound, then the non-strict upper bound b € C' would be a maximal
element. We denote the set of strict upper bounds of C' as C~.

We take f: P(A) — A, a selector on P(A), and define a function g from the
set of all chains in A as g(C) = f(C~). So g maps a chain to one of its strict
upper bounds. Now pick an arbitrary a € A and define the mapping H : On — A
by transfinite recursion as H(0) = a and H(a+ 1) = g({H(«a)}) for successor
ordinals, and as H(0) = g(H[d]) for limit ordinals. We start with a and get bigger
and bigger elements of A using successor ordinals, each time taking a strict upper
bound of a single element chain. If an ordinal § is limit, we notice that H[d] is a
chain (all the smaller elements that we picked previously are strict upper bounds
of each other and therefore comparable) and H(0) is a strict upper bound of this
chain.

Note that if we want to be rigorous about the construction by transfinite
recursion, we should define g on the entire V. But we can do this in any way, for
example by defining G(z) as @ if = is not a chain of A and g(z) otherwise.

Finally, observe that H : On — A is an increasing function (each value is a
strictly larger upper bound than the previous one) and that it is injective. Thus
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we obtain an injection from the proper class On into the set A, which is impossible.
Indeed, taking the inverse mapping and applying the axiom of replacement would
then imply that On itself is a set, which is a contradiction. m

Theorem 2.23. Zorn’s lemma implies the well-ordering principle.

Proof. Let X be any set. We will find a well-ordering of it by considering all of
its possible well-ordered subsets, picking the maximal using Zorn’s lemma and
showing that it orders the entire X. Consider the set []

W = {(A,<gr)|<g is a well-order on A C X},

and define a partial order <)y on it by (A, <g) <w (B, <g) if B end-extends A.
That is, if A C B, and <pg is the restriction of <g to A, and A is an initial
segment of B. We will apply Zorn’s lemma to W.
First we need to show that chains have upper bounds. Let C C W be a chain.
Define the set
M = J{Al (A <m) €€ C X,

and for x,y € M put x <, y if there exists some (A, <g) € C such that z,y € A
and x <g y. Because C is a chain, this is well-defined: if 2 and y belong to two
distinct orderings in C then one extends the other and hence they agree.

We claim that (M, <) is well-ordered. Let S C M be nonempty and pick
some s € S. Then s € A, for some (A,, <g) € C. Note that Ay N S is nonempty
and because A is well-ordered, there exists a minimum m = min.,(A; N S).
Notice that also m = min.,, (S). Indeed, if there was a t € S\ Ay such that
t <pr m, then it would be in S due to some A; € C containing t. Since both A,
and A; are in the chain, either

e A, C A,, which is impossible since then ¢t € A, contradicting minimality of
m in Ag NS, or

e A, C A;, meaning that A, is an initial segment of A; and therefore m € A,
is smaller than t € A, \ As, which contradicts the assumption that ¢ <;; m.

Therefore (M, <;;) is well-ordered and thus an upper bound of C in W.
Because all chains are bounded, by Zorn’s lemma, W has a maximal element
(W, <w). We claim that W = X and so it is the sought-after well-ordering of
X. For contradiction, suppose there exists some z € X \ W and extend the
ordering <y to W’ := W U {x} by making each y € W smaller than z. Notice
that this slightly “longer” order is a well-ordering of W’ and therefore is in W.
Moreover, it end-extends (W, <) which hence is not maximal in (W, <yy). We
have arrived at a contradiction and can conclude that W = X. O

Exercise. Would the proof still have worked if instead of end-extensions, we had
simply used general extensions? Meaning that the smaller ordering doesn’t need
to be an initial segment of the larger one.

Hint. By defining the end-extension ordering, we have ensured that chains have
a similar structure to chains of ordinals (larger ordinals end-extend the smaller
ones). Thus, when proving that M is well-ordered, we could have used a similar
strategy as when proving that the ordinals are well-ordered.

2Why is this a set?
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Theorem 2.24. We conclude that the following statements are equivalent in ZF:
e the axiom of choice,
e the well-ordering principle,
e Zorn’s lemma.

To demonstrate an application of Zorn’s lemma, consider the following ques-
tion. Does every connected graph have a spanning tree? Finding one in a finite
graph is easy: simply remove edges of cycles until there are no cycles left. But
this process may not terminate for infinite graphs.

Proposition 2.25. Fvery connected graph has a spanning tree.

Proof. The set of all sub-graphs that are trees is partially ordered by inclusion,
and the union of a chain is its upper bound. Zorn’s lemma says that a maximal
tree must exist, which is a spanning tree since the graph is connected. O

Remark. In general, suppose that we have a structure represented by a set X (a
graph) with substructures A C X (subgraphs which are trees) and we want to
show that there is a maximal substructure. Then we simply need to check that
the union of a chain of substructures is itself a substructure.
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This document is mostly my notes from the class NMAIO74 taught at MFF
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the introductory set theory course can be found HERE, also in Czech.
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