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Part III: The C++ Memory Model and Resource
Management
This part delves into the intricacies of C++ memory management and resource handling. It begins by
demystifying raw pointers, dynamic allocation, and the risks associated with manual memory management.
The guide then explores value categories, lvalue and rvalue references, and the mechanics of move semantics,
equipping you to write efficient and safe code. Finally, it introduces smart pointers and the RAII (Resource
Acquisition Is Initialization) paradigm, demonstrating modern techniques for automatic and robust resource
management in C++.
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6. Raw Pointers and Dynamic Allocation
This chapter marks the transition into the core of C++: manual memory management. For an experienced
developer coming from a managed language, this is the most significant conceptual shift. In C++, you must
understand where your data lives and who is responsible for its destruction. While modern C++ aims to
minimize the use of raw pointers, they remain the foundational mechanism for dynamic memory control.

6.1 The Stack vs. The Heap vs. The Data Segment
In contrast to the abstract "managed heap" of the CLR, a C++ program explicitly divides its working memory
into three main regions, each dictating a different Storage Duration (Chapter 3.3).

Memory
Region

Storage
Duration

Allocation/Deallocation C++ Keywords Use Case

The
Stack

Automatic
Automatically managed
by the compiler (LIFO).

Local variables,
function arguments,
objects without new.

Small, local variables; RAII
objects.

The
Heap

Dynamic
Manually allocated by
the programmer.

new, delete,
malloc, free.

Large objects, data whose
size is unknown until
runtime, shared resources.

Data
Segment

Static
Exists for the entire
program lifetime.

static, global
variables, string
literals.

Constants, global
application state.

The Crucial Distinction: Objects created on the Stack have Automatic Storage Duration and are
deterministically destroyed when they go out of scope (Chapter 5.3). Objects created on the Heap have
Dynamic Storage Duration and exist until they are explicitly destroyed by the programmer using delete.

6.2 Raw Pointers: Declaration, Dereferencing, and the Null State
A raw pointer is a variable that holds the memory address of another variable. It is the C++ equivalent of an
IntPtr used in unsafe C# code, representing direct control over memory.

Declaration and Address-of

The asterisk (*) is used when declaring a pointer. The ampersand (&) is the address-of operator, which
retrieves the memory address of a variable.

int number = 42; // An integer with automatic storage (on the Stack) 
 
// Declaration: ptr is a pointer to an integer
int* ptr = &number; 

Dereferencing
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The asterisk (*) is also used to dereference a pointer, meaning to access or modify the data at the address
the pointer holds.

// Access the value at the address held by ptr (which is 42)
std::cout << "Value via pointer: " << *ptr << "\n"; 
 
// Change the value of 'number' via the pointer alias 
*ptr = 100; 
std::cout << "New value of number: " << number << "\n"; // Output: 100

Syntax Alert: T* ptr declares a pointer. *ptr accesses the data pointed to. The star has two separate
meanings based on context.

The Null State

In Modern C++, the correct way to represent a pointer that does not point to any valid memory address is
using nullptr (introduced in C++11), which is a distinct type for null pointer constants.

int* data_ptr = nullptr; // Always initialize pointers to nullptr

Never use the C-style NULL macro, as it is an integer literal (0) and can cause ambiguous overload resolution
errors.

6.3 Manual Allocation and Deallocation (new and delete)

To create an object on the Heap (Dynamic Storage Duration), you use the new operator. new allocates memory
and calls the object's constructor. It returns a raw pointer to the newly created object.

// Allocation on the Heap
// ptr points to a Heap object. Its lifetime is independent of its scope. 
Point* ptr = new Point(10, 20); 
 
// Access members via the arrow operator (syntactic sugar for (*ptr).x) 
ptr->x = 50; 

The new/delete Contract

Because the C++ heap is unmanaged, you are entirely responsible for cleaning up memory allocated with new.
You must call delete on the pointer when you are finished with the object.

// Deallocation: calls the object's destructor, then frees the memory.
delete ptr; 
 
// After deletion, ptr is a dangling pointer (see 6.4)
// ptr = nullptr; // Best practice: reset the pointer after deletion
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Array Allocation and Deallocation

If you allocate an array of objects on the heap, you must use the array form of new and the array form of
delete.

// Array Allocation: Allocates an array of 5 Point objects on the Heap 
Point* points_array = new Point[5]; 
 
// Array Deallocation: MUST use delete[] to call the destructor for ALL 5 objects
delete[] points_array; 
// delete points_array; // ERROR/Undefined Behavior: Destructor only called for 
the first element, risking memory leaks.

6.4 Dangers: Memory Leaks, Double Deletion, and Dangling Pointers
The contract of manual memory management is fraught with peril. These errors are often silent at runtime but
catastrophic for stability, and they are the primary reason Modern C++ avoids raw pointers for object
ownership.

1. Memory Leaks

A memory leak occurs when memory is allocated on the heap but is never freed by delete, usually because
the pointer owning the memory goes out of scope.

void leaky_function() { 
    Point* p = new Point(1, 1); 
    // ... function exits here ... 
    // 'p' (the pointer) goes out of scope and is destroyed, 
    // but the Point object on the Heap is NOT deleted. 
    // The memory is now inaccessible—a leak. 
} 

2. Double Deletion

Double deletion occurs when delete is called more than once on the same pointer address.

Point* p = new Point(1, 1); 
delete p; 
// ... later ...
// The memory has been returned to the system, but the pointer still holds the 
address.
delete p; // CRASH! (Undefined Behavior, usually a heap corruption error)

3. Dangling Pointers
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A dangling pointer is a pointer that points to a memory location that has already been freed.

Point* p1 = new Point(1, 1); 
Point* p2 = p1; // p2 now also points to the same object
delete p1; // The memory is freed 
 
// Now p2 is a dangling pointer. Using *p2 here is Undefined Behavior. 
p2->x = 5; // CRASH or corrupted data!

These inherent risks are why the guiding principle of C++ is: "Never use raw pointers to manage
ownership; use smart pointers instead." (Chapter 9)

6.5 C-style Arrays, Pointer Arithmetic, and Decaying
Raw pointers are closely linked to the legacy C-style array (int arr[N]). While Modern C++ prefers
std::vector (dynamic) or std::array (static), understanding C-style arrays is necessary.

C-style Arrays

C-style arrays are fixed-size and lack bounds checking, unlike C# arrays:

int data[10]; // An array of 10 integers (fixed size on the stack) 
data[10] = 5; // No error from the compiler, but this is a serious error (Buffer 
Overflow).

Array Decaying

A fundamental concept is array decay: when a C-style array is passed to a function or assigned to a pointer, it
automatically decays into a raw pointer to its first element.

void process_array(int* ptr) { 
    // This function has no idea that the array originally had 10 elements. 
} 
 
int main() { 
    int arr[10]; 
    process_array(arr); // arr decays to an int* pointing to arr[0] 
    return 0; 
} 

Pointer Arithmetic

Because arrays and pointers are intertwined, you can perform arithmetic directly on pointers to move through
memory:



part3.md 2025-10-03

6 / 21

int arr[] = {10, 20, 30}; 
int* p = arr; // p points to arr[0] (value 10) 
 
p++; // p now points to arr[1] (value 20)
std::cout << "Value: " << *p << "\n"; // Output: 20 
 
// p += 2; // Move 2 integers forward

The increment p++ actually increments the memory address by sizeof(int) bytes, making pointer arithmetic
type-aware. This low-level capability is powerful but is another vector for buffer overflow errors if bounds are
not manually checked.

Key Takeaways
Heap Requires new/delete: Memory allocated on the Heap using new has Dynamic Storage
Duration and must be explicitly released using delete (or delete[] for arrays).
nullptr is Modern Null: Always initialize raw pointers to nullptr (C++11) to safely indicate a non-
pointing state. Avoid the C-style NULL.
The new/delete Contract: You must pair new T with delete T and new T[N] with delete[] T to
avoid Undefined Behavior and memory leaks.
Raw Pointer Ownership is Dangerous: The use of raw pointers for ownership leads directly to the
three great dangers: memory leaks, double deletion, and dangling pointers.
Array Decay: C-style arrays automatically decay into raw pointers to their first element, enabling
pointer arithmetic but sacrificing compile-time size information and bounds checking.

Exercises

1. Memory Leak Simulation: Write a function create_and_leak() that allocates a large array of 1,000
integers on the heap using new int[1000], but forgets to call delete[].

Task: Explain why this specific function call leads to a memory leak and where the memory is lost
(which region?).
Hint: The pointer holding the address is destroyed on the stack, but the memory on the heap
remains allocated and unreachable.

2. Dangling Pointer Creation: Write a simple program where a pointer p1 is created, a second pointer p2
is assigned to p1, and then delete p1 is called.

Task: Reset the pointer p1 to nullptr immediately after deletion, but leave p2 pointing to the
old address. Explain why p2 is now a dangling pointer.
Hint: The memory is gone, but the address in p2 is still the same.

3. Pointer Arithmetic Safety: Declare a C-style array char text[4] = "abc";. Declare a char* p =
text;.

Task: Use pointer arithmetic (p = p + 5;) and then try to print *p. Explain the potential for
Undefined Behavior (or a crash) from this operation.
Hint: You have moved the pointer outside the bounds of the original array, accessing unowned
memory.
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4. Allocation Mismatch: Write a function that calls new int[10] but mistakenly calls delete ptr; (the
single-object form) instead of delete[] ptr;.

Task: Explain the specific C++ rule that is violated and the consequence (which is likely
Undefined Behavior).
Hint: The array form of delete is required to properly call the destructors and manage the
metadata for the array allocation.

7. Value Categories and References Deep Dive
Part III is dedicated to maximizing performance and safety in C++. The foundation of the C++ optimization
strategy—Move Semantics—rests on a deep understanding of Value Categories. These categories
determine an object's identity, lifetime, and, critically, whether its internal resources can be stolen instead of
copied.

7.1 Lvalues, Rvalues, and Prvalues: Defining Object Identity
Every expression in C++ results in a value that belongs to one of three primary value categories (Lvalue,
Rvalue, Prvalue). This is known as the Lvalue/Rvalue dichotomy.

Lvalues (Left-hand side values)

An Lvalue ($\ell$value) is an expression that designates a named, identifiable region of storage (a memory
location) that persists beyond the current expression. Lvalues have identity and can be assigned to.

Rule: If you can take the address of an expression using the & operator, it's generally an Lvalue.
Examples: Named variables, references (int x;, x is an Lvalue), functions returning an Lvalue
reference, class member access.

int x = 10; 
int& ref = x; // x is an Lvalue; we can bind an Lvalue reference to it.
int* ptr = &x; // We can take its address.

Rvalues (Right-hand side values)

An Rvalue ($r$value) is a temporary value that is the result of an expression and is about to expire. Rvalues do
not have a permanent, identifiable memory location that can be accessed later. They are often created on the
stack only for the duration of a single expression.

Rule: You generally cannot take the address of an Rvalue.
Examples: Literal values (10, "hello"), the result of arithmetic operations (x + y), functions returning
by value (int get_val()).

int result = x + 5; 
// (x + 5) is an Rvalue: it's a temporary result with no name.
// result is an Lvalue (named variable).
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The Modern Taxonomy (C++11/17)

For the purposes of Move Semantics, the categories are refined:

$P$rvalue (Pure Rvalue): A temporary object produced by an expression (e.g., x + 5).
$X$value (eXpiring Value): An object that has an identity but whose resources are about to be
destroyed and can thus be "stolen" (e.g., the result of std::move(x)).
$G$lvalue (Generalized Lvalue): The union of $L$values and $X$values (objects that have identity).
$R$value: The union of $P$rvalues and $X$values (objects whose contents can be moved from).

The critical takeaway: Rvalues (Prvalues and Xvalues) are the targets of move semantics.

7.2 The Need for Rvalue References
Before C++11, an $L$value reference (T&) was the only way to pass an object without copying it (Chapter 4.4).
However, $L$value references cannot bind to $R$values (temporaries), because binding to a temporary
would allow its value to be modified—a violation of its transient nature.

void foo(int& ref) { /* ... */ } // Lvalue reference 
 
int get_ten() { return 10; } 
 
// foo(get_ten()); // COMPILE ERROR: Cannot bind Lvalue reference to Rvalue 
(temporary)

Rvalue references (T&&) were introduced to solve this. An $R$value reference is a new kind of reference that
can bind only to $R$values. This allows the compiler to specifically target temporary objects, enabling the
efficient theft of resources (moving).

void bar(int&& ref) { /* ... */ } // Rvalue reference 
 
int get_ten() { return 10; } 
 
bar(get_ten()); // OK: The Rvalue 10 binds to the Rvalue reference.
// bar(x); // COMPILE ERROR: Cannot bind Rvalue reference to Lvalue (named 
variable x).

The ability to bind an $R$value reference to a temporary object is the mechanism that makes move
constructors and move assignment operators (Chapter 8) possible.

7.3 Reference Collapsing and Forwarding References
When writing generic code (templates), it's often necessary to accept parameters that can be either an
$L$value or an $R$value. This is where Forwarding References and Reference Collapsing come into play.

Forwarding References (formerly Universal References)
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A Forwarding Reference is a template parameter declared as an $R$value reference (T&&) where T is a
deduced template type.

template <typename T> 
void generic_func(T&& param) { 
    // param is a Forwarding Reference 
} 

When you call generic_func, the compiler deduces T and applies the reference collapsing rules to
determine the final type of param.

Reference Collapsing Rules

These rules dictate what happens when you combine two references (which only happens during template
type deduction):

Original Call Type Deduced T Final Type of param (T&&) Collapsed Result

Lvalue (int&) int& (int&)&& $\rightarrow$ int& (Lvalue reference)

Rvalue (int&&) int (int)&& $\rightarrow$ int&& (Rvalue reference)

The Key Rule: An $L$value reference combined with anything always results in an $L$value reference.
Only combining two $R$value references results in an $R$value reference.

This means a single signature (T&& param) can accept and preserve the exact value category (Lvalue or
Rvalue) of the original argument.

7.4 The std::move Utility (A Cast, Not a Move)

The name std::move is highly misleading. It does not perform any data movement. It is a simple,
unconditional cast to an $R$value reference.

// Equivalent definition of std::move
template <typename T> 
typename std::remove_reference<T>::type&& move(T&& t) noexcept { 
    return static_cast<typename std::remove_reference<T>::type&&>(t); 
} 

The Purpose of std::move

std::move is used to convert an Lvalue into an Xvalue (an expiring value). This tells the compiler, "I know this
is a named variable, but please treat it as a temporary so its resources can be stolen by a move constructor."

std::vector<int> source = {1, 2, 3}; 
 
// 1. source is an Lvalue (named).
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// 2. std::move(source) casts 'source' into an Rvalue reference (Xvalue).
// 3. The move constructor of 'destination' is called, which steals source's 
internal buffer.
std::vector<int> destination = std::move(source); 
// WARNING: 'source' is now in a valid but unspecified state (its contents were 
stolen).

7.5 The std::forward Utility

When using Forwarding References (Section 7.3) in generic code, we run into a problem: the generic
parameter param inside the function body is always an Lvalue (it has a name inside the function). If we used
std::move(param) to pass it to another function, we would unconditionally cast it to an $R$value reference,
which is wrong if the original argument was an $L$value that should be copied.

std::forward solves this by performing a conditional cast.

It checks the type T that was deduced by the reference collapsing rules.
If $T$ was deduced as an $L$value reference (int&), std::forward casts the parameter back to an
$L$value reference (preserving the ability to copy).
If $T$ was deduced as a pure type (int), which happens when an $R$value was passed, std::forward
casts the parameter back to an $R$value reference (enabling moving).

This is known as Perfect Forwarding: the inner function receives the argument with the exact same value
category (Lvalue or Rvalue) as was passed to the outer function.

template <typename T> 
void wrapper(T&& arg) { // arg is a Forwarding Reference 
    // If the caller passed an Lvalue (copy), forward as Lvalue (copy) 
    // If the caller passed an Rvalue (move), forward as Rvalue (move) 
    process_resource(std::forward<T>(arg)); 
} 

Key Takeaways
Lvalues vs. Rvalues: $L$values have identity (names and addresses); $R$values are temporary, transient
results.
$R$value References (T&&): This new type of reference binds only to $R$values (temporaries), making
it the essential mechanism to intercept and steal resources from objects about to be destroyed.
Forwarding References: A specific form of T&& in template contexts that uses reference collapsing to
perfectly preserve the Lvalue/Rvalue nature of the original argument.
std::move is a Cast: std::move is an unconditional cast that converts a named $L$value into an
$R$value, enabling its contents to be moved from. It does not perform the actual data transfer.
std::forward is Conditional: std::forward is used within generic code (templates) to conditionally
cast a forwarding reference back to its original value category, enabling perfect forwarding (copy if
$L$value, move if $R$value).

Exercises
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1. Identify Value Categories: For each expression below, state whether the result is an $L$value or an
$R$value.

std::string s1 = "hello";
s1 + " world"
s1
*(&s1)
std::move(s1)
Hint: Only named variables and dereferenced pointers/references are Lvalues. std::move always
yields an $R$value.

2. Rvalue Reference Binding Failure: Write a small program with two variables, int a = 5; and int b
= 10;. Attempt to declare an $R$value reference: int&& ref = a;

Task: Observe the compiler error. Explain why an $R$value reference cannot be initialized with
the $L$value a.
Hint: Binding an $R$value reference to an $L$value would let you modify a named object via a
mechanism intended only for temporaries.

3. The Misleading std::move: Create a simple struct Data with a string member. Write a function void
process(Data&& d) that takes an $R$value reference. In main(), create a Data d1.

Task: Call the function using process(std::move(d1)). Explain why d1 is an $L$value before the
call but is treated as an $R$value during the call.
Hint: std::move is a cast that changes the expression type, not the variable type.

4. Reference Collapsing Test: Given the function template template <typename T> void
test_ref(T&& val);.

Task: Call test_ref with int i = 5; and then with 5 + 5. For each call, state the deduced type
of T and the final, collapsed type of val.
Hint: Passing an $L$value deduces $T$ as $T&$; passing an $R$value deduces $T$ as $T$.

8. Move Semantics and State Control
Move Semantics is the performance optimization technique that defines Modern C++ development. It
enables objects to transfer ownership of expensive internal resources—like large memory buffers or file
handles—instead of wasting time performing a deep copy. This concept relies entirely on Value Categories
(Chapter 7) to distinguish between temporary objects (safe to steal from) and named objects (must be
copied).

8.1 Deep vs. Shallow Copy Review
When an object contains a raw pointer to dynamically allocated resources (e.g., a buffer on the heap), there
are two ways to copy that object:

1. Shallow Copy (The Default): Only the object itself (and the raw pointer within it) is copied. Both the
original and the copy point to the same underlying resource. This is what the compiler provides by
default and is catastrophic for resource management.
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Danger: When the destructor is called on both the original and the copy, it results in double
deletion of the shared resource, leading to a crash (Chapter 6.4).

2. Deep Copy: Both the object and the resource it points to are copied. A new, independent resource is
allocated, and the data is copied into it. The original and the copy are now completely independent.

Requirement: If your class manages a raw resource (a raw pointer), you must implement deep
copying yourself.

8.2 The Copy Constructor and Copy Assignment Operator
To implement deep copying, you must define the two special member functions that handle $L$value-
to-$L$value (named object-to-named object) duplication:

1. The Copy Constructor (T(const T& other))

Called when a new object is initialized from an existing object (e.g., T b = a; or T b(a); or when passing by
value).

class ResourceWrapper {
private: 
    int* data_ = nullptr; 
    size_t size_ = 0; 
public: 
    // ... Constructor, Destructor ... 
 
    // The Copy Constructor: Performs a deep copy 
    ResourceWrapper(const ResourceWrapper& other) : size_(other.size_) { 
        std::cout << "Copy Constructor (Deep Copy)\n"; 
        data_ = new int[size_]; // 1. Allocate a NEW resource 
        std::copy(other.data_, other.data_ + size_, data_); // 2. Copy the data 
    } 
}; 

2. The Copy Assignment Operator (T& operator=(const T& other))

Called when an existing object is assigned the value of another existing object (e.g., T b; b = a;). This
requires care to manage the existing resource.

    // The Copy Assignment Operator: Manages existing resources 
    ResourceWrapper& operator=(const ResourceWrapper& other) { 
        std::cout << "Copy Assignment Operator\n"; 
        if (this != &other) { // 1. Check for self-assignment (a = a) 
            delete[] data_; // 2. Release the existing resource 
            size_ = other.size_; 
            data_ = new int[size_]; // 3. Allocate new resource 
            std::copy(other.data_, other.data_ + size_, data_); // 4. Copy data 
        } 
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        return *this; // 5. Return reference to self 
    } 

8.3 The Move Constructor and Move Assignment Operator
Move Semantics is implemented via two special member functions that accept an $R$value reference (T&&)
as a parameter (Chapter 7).

Instead of allocating memory and copying data, they perform the Move operation:

1. Theft: Copy the internal resource pointer (the raw pointer) from the source object.
2. Pacification: Set the source object's internal resource pointer to nullptr.

By nulling out the source's pointer, the source's destructor (when called) will safely attempt to delete[]
nullptr;, which is guaranteed to do nothing, preventing the resource from being destroyed twice.

1. The Move Constructor (T(T&& other) noexcept)

Called when a new object is initialized from an $R$value (e.g., a function return, or an object explicitly cast
with std::move).

    // The Move Constructor: Steals resources from an expiring Rvalue 
    ResourceWrapper(ResourceWrapper&& other) noexcept 
        : data_(other.data_), size_(other.size_) { // 1. Steal the resource 
 
        std::cout << "Move Constructor (Theft)\n"; 
        other.data_ = nullptr; // 2. Pacify the source (null its pointer) 
        other.size_ = 0;       // 3. Clear source size 
    } 

2. The Move Assignment Operator (T& operator=(T&& other) noexcept)

Called when an existing object is assigned the value of an $R$value.

    // The Move Assignment Operator 
    ResourceWrapper& operator=(ResourceWrapper&& other) noexcept { 
        std::cout << "Move Assignment Operator\n"; 
        if (this != &other) { // 1. Check for self-assignment (optional for move) 
            delete[] data_; // 2. Release the existing resource held by *this* 
 
            // 3. Perform the theft 
            data_ = other.data_; 
            size_ = other.size_; 
 
            // 4. Pacify the source 
            other.data_ = nullptr; 
            other.size_ = 0; 
        } 
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        return *this; 
    } 

Note: Move operations are typically marked with noexcept to inform the compiler that they will not throw
exceptions.

8.4 Compiler-Generated Defaults and Explicit Deletion (= default, =
delete)

The C++ compiler automatically generates the four/five special member functions unless certain conditions
are met (e.g., if you declare a destructor, the compiler will suppress the default move functions).

Modern C++ provides tools to control this generation explicitly:

Keyword Use Description

=
default

T() =
default;

Explicitly request the compiler to generate the standard default implementation
for a special member function. Used to gain back a default implementation that
was suppressed by other code.

=
delete

T(const
T&) =
delete;

Explicitly prevent the compiler from generating or using a special member
function.

Example: Making a Move-Only Class

If a resource cannot be copied (e.g., a unique file lock), you can enforce that by deleting the copy operations:

class UniqueResource {
public: 
    UniqueResource() = default; 
 
    // Explicitly delete copy operations 
    UniqueResource(const UniqueResource&) = delete; 
    UniqueResource& operator=(const UniqueResource&) = delete; 
 
    // Use default move operations 
    UniqueResource(UniqueResource&&) = default; 
    UniqueResource& operator=(UniqueResource&&) = default; 
}; 

This pattern is common; it forces users to use std::move if they need to transfer ownership, similar to how
C#'s StreamReader often requires explicit closure or scope usage.

8.5 The Rule of Zero/Three/Five: Modern Class Design
The C++ community has codified the rules for managing the special member functions into clear design
principles:
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1. The Rule of Five (Pre-C++11/Legacy Design)

If you must manage a raw resource (like a raw pointer), you must deal with five specific operations:

1. Destructor
2. Copy Constructor
3. Copy Assignment Operator
4. Move Constructor
5. Move Assignment Operator

If you define any one of these, you must define them all to ensure proper resource management and prevent
the disastrous effects of a shallow copy combined with a raw pointer.

2. The Rule of Three (Pre-C++11)

The rule of five's predecessor, which only mandated the first three (Destructor, Copy Constructor, Copy
Assignment Operator) because move operations didn't exist yet.

3. The Rule of Zero (Modern C++ Best Practice)

The goal of Modern C++ is to avoid the complexity of the Rule of Five entirely by following the Rule of Zero:

A class that manages a resource should define zero custom special member functions. Instead, it
should delegate resource management to a member that already handles it.

This is achieved by storing raw resources inside smart wrappers (like std::unique_ptr or std::vector).
Since these wrappers already implement the Rule of Five safely (they deep copy/move correctly), the
compiler-generated default copy and move operations for the containing class will automatically call the safe,
correct operations on the member wrappers.

Recommendation: Strive to follow the Rule of Zero by using containers and Smart Pointers (Chapter 9) for
all resources. Only resort to the Rule of Five when implementing the resource manager itself (e.g., the smart
pointer class).

Key Takeaways
Move vs. Copy: Copy Semantics performs expensive deep duplication. Move Semantics performs
cheap resource theft (shallow copy of pointers followed by nulling the source).
The Four Functions: Move Semantics requires defining the Copy Constructor (const T&), Copy
Assignment Operator (const T&), Move Constructor (T&&), and Move Assignment Operator (T&&).
The Move Operation: The core of moving is taking the raw pointer from the $R$value source and
setting the source's pointer to nullptr to prevent double deletion.
Control Defaults: Use = default to regain a compiler-generated function and = delete to suppress
an unwanted operation (e.g., making a class move-only).
Rule of Zero: The ultimate goal. Design your classes to manage no raw resources directly; instead,
delegate resource management to members that handle it correctly (like smart pointers).

Exercises
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1. Shallow Copy Failure: Implement the ResourceWrapper class from the chapter, including a
constructor that allocates an integer array and a destructor that calls delete[]. Do not write a custom
copy constructor or assignment operator.

Task: In main(), create two wrappers, ResourceWrapper a; and ResourceWrapper b = a;.
Run the program and observe the crash. Explain why the compiler's default shallow copy failed.
Hint: The program will crash due to double deletion of the same heap resource.

2. Enforcing Move-Only: Take a simple class Logger and delete its copy constructor and copy
assignment operator using the = delete syntax.

Task: Try to pass an instance of Logger to a function by value. The compiler should fail. Explain
why this design choice is useful for objects like file handles or network connections.
Hint: Copying resources like file handles is often illogical; they should be unique or transferable.

3. Manual Move Implementation: Complete the implementation of the ResourceWrapper class by
adding the Move Constructor and setting the source pointer to nullptr.

Task: In main(), initialize a new object using ResourceWrapper b = std::move(a);. Verify
that a.data_ is now nullptr and no copy was performed.
Hint: The move constructor should execute, and the copy constructor should not.

4. The Rule of Zero Design: Consider a class Employee that needs to manage a pointer to a Passport
object.

Task: Sketch the definition of the Employee class by making the Passport* member into an
std::unique_ptr<Passport>. Explain why this new design adheres to the Rule of Zero and
requires no custom copy/move/destructor code.
Hint: The unique_ptr handles the destructor and move semantics automatically, and it deletes
copy semantics, which the compiler-generated defaults inherit.

9. Smart Pointers and RAII
The journey through raw pointers, move semantics, and the dangers of manual memory management
(Chapters 6, 7, 8) culminates here. Smart Pointers are the primary mechanism for implementing the core C++
memory safety paradigm known as RAII. You should use smart pointers for virtually all heap allocations in
modern C++.

9.1 The RAII Principle: Resource Acquisition Is Initialization
RAII (Resource Acquisition Is Initialization) is the single most important idiom in C++ for safe resource
management. It is the C++ answer to the problem solved by garbage collection (GC), but it achieves
deterministic, rather than probabilistic, cleanup.

The principle states that resource ownership must be tied to the lifetime of a stack-based object.

The RAII Mechanism (The C++ Safety Net)

1. Acquisition: The resource (e.g., heap memory, a file handle, a network lock) is acquired in the
constructor of a stack-allocated wrapper object.
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2. Initialization: The wrapper object is initialized on the Stack (Automatic Storage Duration).
3. Guaranteed Release: When the stack-allocated wrapper object goes out of scope (e.g., the function

returns or a block exits), its destructor is guaranteed to be called deterministically (Chapter 5.3).
4. Release: The destructor contains the code to safely release the resource (e.g., calling delete, closing

the file, or releasing the lock).

Smart pointers are RAII wrapper classes designed to manage heap memory, ensuring that delete is called
automatically when the pointer object leaves scope, eliminating the possibility of memory leaks from
forgetting delete.

9.2 std::unique_ptr: Exclusive, Transferable Ownership

std::unique_ptr is the preferred and most efficient smart pointer, designed for situations where an object
on the heap has only one owner.

Characteristics

Exclusive Ownership: Only one unique_ptr can point to the resource at a time.
Zero Overhead: At runtime, a std::unique_ptr is exactly the same size and speed as a raw pointer. It
has no runtime overhead compared to manual new/delete.
Move-Only Semantics: It cannot be copied (it deletes its copy constructor, Chapter 8.4). Its ownership
can only be transferred using move semantics (std::move or returning from a function).

#include <memory>
#include <iostream> 
 
// 1. Exclusive Ownership: only 'data' owns the object
std::unique_ptr<int> data = std::make_unique<int>(10); 
 
// 2. Transfer Ownership (Move)
// The object pointed to by 'data' is now owned by 'new_owner'.
std::unique_ptr<int> new_owner = std::move(data); 
 
// 3. Guaranteed Deletion
// When 'new_owner' goes out of scope, the destructor calls delete on the integer.

The ability to return a unique_ptr from a function is key: it returns the resource by value, which implicitly
invokes the fast move constructor (Chapter 8.3) to transfer ownership to the caller.

9.3 std::make_unique vs. new unique_ptr
While you can construct a unique_ptr directly using new, the standard factory function std::make_unique
(C++14) is strongly preferred for safety and efficiency.

Exception Safety

Using std::make_unique ensures exception safety. Consider the unsafe construction:
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// UNSAFE: Potential leak if some_func() throws an exception 
process(std::unique_ptr<T>(new T()), some_func()); 

In the unsafe line, the compiler might perform the steps out of order:

1. new T(): Memory is allocated.
2. some_func(): This function runs.
3. std::unique_ptr<T>(): The smart pointer is constructed.

If some_func() throws an exception after the raw memory is allocated but before the smart pointer is
constructed, the raw memory is never wrapped and is permanently leaked.

std::make_unique performs the memory allocation and the smart pointer construction in a single, atomic
step, guaranteeing that if an exception occurs, no memory is leaked.

Best Practice: Always use std::make_unique<T>(args) for creating unique_ptr objects.

9.4 std::shared_ptr: Shared Ownership and Reference Counting

std::shared_ptr is designed for complex scenarios where multiple, non-exclusive owners need to share a
resource on the heap.

Characteristics and Overhead

Shared Ownership: Multiple shared_ptr objects can point to the same resource.
Reference Counting: The resource is only deleted when the last shared_ptr pointing to it is
destroyed or reset. This requires runtime overhead in the form of a control block.
Control Block: A separate, small allocation alongside the object that contains the reference count and
the weak count.

// Two shared pointers point to the same resource. Count is 2.
std::shared_ptr<int> p1 = std::make_shared<int>(50); 
std::shared_ptr<int> p2 = p1; 
 
// When p2 is destroyed, the count drops to 1.
// When p1 is destroyed, the count drops to 0, and the destructor calls delete.

Because of the reference counting overhead, std::unique_ptr is preferred unless true shared ownership is
necessary.

9.5 std::make_shared for Performance and Safety
Similar to unique_ptr, std::make_shared is the safe factory for shared_ptr, but it provides a critical
performance benefit: single-allocation optimization.

Single Allocation

When using new for shared_ptr:



part3.md 2025-10-03

19 / 21

1. Allocation 1: The object itself (new T()).
2. Allocation 2: The control block (reference count, weak count).

When using std::make_shared:

Single Allocation: Both the object and the control block are allocated in a single block of contiguous
memory.

This reduces the total memory required, improves memory locality (leading to better cache performance), and
is exception-safe.

Best Practice: Always use std::make_shared<T>(args) for creating shared_ptr objects.

9.6 std::weak_ptr: Observer Pointers and Breaking Circular References

A std::weak_ptr is a non-owning observer pointer designed to monitor a resource managed by a
std::shared_ptr.

Characteristics and Use

Non-Owning: A weak_ptr does not affect the shared_ptr's reference count.
Safe Access: You cannot directly dereference a weak_ptr. To safely access the resource, you must call
its lock() method, which returns a temporary std::shared_ptr if the resource still exists. If the
resource has been deleted, lock() returns nullptr.

The primary use case for weak_ptr is preventing circular references, which are the only way to cause a
memory leak with shared_ptr.

Breaking Circular References

A circular reference occurs when two objects manage each other via shared_ptr.

class Parent; // Needs a forward declaration
class Child {
public: 
    // Child owns Parent (shared_ptr) 
    std::shared_ptr<Parent> parent_ptr; 
}; 
 
class Parent {
public: 
    // Parent should NOT own Child to avoid circular reference. 
    std::shared_ptr<Child> child_ptr; // Problematic 
}; 

If p owns c and c owns p, the reference count for both will never drop to zero (it will stay at 1), and neither
object's memory will ever be freed.

Solution: The weaker link in the relationship (e.g., the back-reference from the child to the parent) must be
changed to a std::weak_ptr:
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class Parent { /* ... */ }; 
class Child {
public: 
    // Parent should monitor Child, not own it. 
    std::weak_ptr<Parent> parent_ptr; // Breaks the cycle 
}; 

The weak_ptr allows the connection without maintaining the reference count, ensuring that when all external
shared_ptrs are destroyed, the memory is safely cleaned up.

Key Takeaways
RAII is the C++ Safety Net: Resource Acquisition Is Initialization is the core idiom. Smart pointers
are stack-allocated wrapper objects whose destructors guarantee resource release.
std::unique_ptr is the Default: Use std::unique_ptr for exclusive, single ownership. It is efficient,
has zero runtime overhead, and is move-only.
std::make_unique is Standard: Always use std::make_unique to create unique_ptr for exception
safety.
std::shared_ptr Has Overhead: Use std::shared_ptr only when true shared ownership is
required, as it imposes overhead via the reference counting control block.
std::make_shared is Better: Always use std::make_shared for shared_ptr to gain the performance
and memory benefits of single-allocation optimization.
std::weak_ptr Breaks Leaks: Use std::weak_ptr as a non-owning observer, primarily to break
circular references between shared_ptr objects, preventing memory leaks.

Exercises

1. Unique vs. Shared Ownership: Write two blocks of code. In the first, try to copy a std::unique_ptr
(std::unique_ptr<int> p2 = p1;). In the second, try to copy a std::shared_ptr.

Task: Explain the compiler's response in the first case and the runtime mechanism in the second
case.
Hint: unique_ptr has deleted its copy constructor. shared_ptr increments its reference count.

2. std::unique_ptr Resource Release: Create a simple class with a destructor that prints its name. Write
a function where you create an instance of this class on the heap using std::make_unique.

Task: Show that the destructor is called automatically when the function returns, proving the RAII
principle. Then, call ptr.release() on the unique pointer before the function returns. Observe
that the destructor is not called. Explain why release() defeats the RAII guarantee.
Hint: release() returns the raw pointer without deleting the resource, making the memory leak
your responsibility.

3. The std::weak_ptr Access: Create a std::shared_ptr<std::string> named data. Create a
std::weak_ptr<std::string> named observer that monitors data. Reset data to nullptr.

Task: Try to access the string's content directly through observer. Then, try to access it via
observer.lock(). Explain why the direct access fails and why lock() is the only safe way.
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Hint: lock() converts the observer into a temporary shared_ptr that safely checks if the
resource is still alive.

4. Circular Reference Creation: Model the Parent and Child classes from Section 9.6, initially using
std::shared_ptr for both the forward and backward references.

Task: Create instances of both, assign them to each other, and let them go out of scope. (You'll
need a way to detect the leak, like printing a message in their destructors). Explain why the
destructors are never called.
Hint: The cycle means the reference count for each object is permanently held at 1 by the other
object.

Where to go Next
Part I:: The C++ Ecosystem and Foundation: This section establishes the philosophical and technical
underpinnings of C++, focusing on compilation, linking, and the modern modularization system.
Part II: Core Constructs, Classes, and Basic I/O: Here, we cover the essential C++ syntax, focusing on
differences in data types, scoping, const correctness, and the function of lvalue references.
Part III: The C++ Memory Model and Resource Management: The most critical section, which
deeply explores raw pointers, value categories, move semantics, and the indispensable role of smart
pointers and the **RAII** idiom.
Part IV: Classical OOP, Safety, and Type Manipulation: This part addresses familiar object-oriented
concepts like inheritance and polymorphism, emphasizing C++'s rules for **exception safety** and
type-safe casting.
Part V: Genericity, Modern Idioms, and The Standard Library: Finally, we explore the advanced
capabilities of templates, C++20 Concepts, lambda expressions, and the power of the Standard
Library containers and **Ranges** for highly generic and expressive code.
Appendix: Supplementary materials including coding style guidelines, compiler flags, and further
reading.
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