part3.md 2025-10-03

Part lll: The C++ Memory Model and Resource
Management

This part delves into the intricacies of C++ memory management and resource handling. It begins by
demystifying raw pointers, dynamic allocation, and the risks associated with manual memory management.
The guide then explores value categories, Ivalue and rvalue references, and the mechanics of move semantics,
equipping you to write efficient and safe code. Finally, it introduces smart pointers and the RAIl (Resource
Acquisition Is Initialization) paradigm, demonstrating modern techniques for automatic and robust resource
management in C++.

Table of Contents

6. Raw Pointers and Dynamic Allocation

® 6.1 The Stack vs. The Heap vs. The Data Segment

* 6.2 Raw Pointers: Declaration, Dereferencing, and the Null State

® 6.3 Manual Allocation and Deallocation (and)

* 6.4 Dangers: Memory Leaks, Double Deletion, and Dangling Pointers
® 6.5 C-style Arrays, Pointer Arithmetic, and Decaying

7. Value Categories and References Deep Dive

¢ 7.1 Lvalues, Rvalues, and Prvalues: Defining Object Identity
e 7.2 The Need for Rvalue References

* 7.3 Reference Collapsing and Forwarding References

e 74 The Utility (A Cast, Not a Move)

* 7.5The Utility

8. Move Semantics and State Control

8.1 Deep vs. Shallow Copy Review

8.2 The Copy Constructor and Copy Assignment Operator

8.3 The Move Constructor and Move Assignment Operator

8.4 Compiler-Generated Defaults and Explicit Deletion (,)
* 8.5 The Rule of Zero/Three/Five: Modern Class Design

9. Smart Pointers and RAIl

® 9.1 The RAIl Principle: Resource Acquisition Is Initialization

e 92 : Exclusive, Transferable Ownership

e 93 Vs.

e 94 : Shared Ownership and Reference Counting

e 95 for Performance and Safety

* 96 : Observer Pointers and Breaking Circular References

1/21

part3.md 2025-10-03

6. Raw Pointers and Dynamic Allocation

This chapter marks the transition into the core of C++: manual memory management. For an experienced
developer coming from a managed language, this is the most significant conceptual shift. In C++, you must
understand where your data lives and who is responsible for its destruction. While modern C++ aims to

minimize the use of raw pointers, they remain the foundational mechanism for dynamic memory control.

6.1 The Stack vs. The Heap vs. The Data Segment

In contrast to the abstract "managed heap" of the CLR, a C++ program explicitly divides its working memory
into three main regions, each dictating a different Storage Duration (Chapter 3.3).

Memory Storage

. X Allocation/Deallocation C++ Keywords Use Case
Region Duration
) Local variables,)
The . Automatically managed . Small, local variables; RAII
Automatic . function arguments, .
Stack by the compiler (LIFO).) i objects.
objects without
Large objects, data whose
The . Manually allocated by \ , T .
Dynamic size is unknown until
Heap the programmer. , .
runtime, shared resources.
)) , global
Data . Exists for the entire)] Constants, global
Static o variables, string o
Segment program lifetime. application state.

literals.

The Crucial Distinction: Objects created on the Stack have Automatic Storage Duration and are
deterministically destroyed when they go out of scope (Chapter 5.3). Objects created on the Heap have
Dynamic Storage Duration and exist until they are explicitly destroyed by the programmer using

6.2 Raw Pointers: Declaration, Dereferencing, and the Null State

A raw pointer is a variable that holds the memory address of another variable. It is the C++ equivalent of an
used in C# code, representing direct control over memory.

Declaration and Address-of
The asterisk (*) is used when declaring a pointer. The ampersand (%) is the address-of operator, which
retrieves the memory address of a variable.

int number = 5

int* ptr = &number;

Dereferencing

2/ 21

part3.md 2025-10-03

The asterisk (*) is also used to dereference a pointer, meaning to access or modify the data at the address
the pointer holds.

// Access the value at the address held by ptr (which is 42)

std::cout << "Value via pointer: " << *ptr << "\n";

// Change the value of 'number' via the pointer alias

*ptr = 100;
std::cout << "New value of number: " << number << "\n"; // Output: 100
Syntax Alert: declares a pointer. accesses the data pointed to. The star has two separate

meanings based on context.

The Null State

In Modern C++, the correct way to represent a pointer that does not point to any valid memory address is
using (introduced in C++11), which is a distinct type for null pointer constants.

int* data _ptr = nullptr; // Always initialize pointers to nullptr

Never use the C-style macro, as it is an integer literal (9) and can cause ambiguous overload resolution
errors.

6.3 Manual Allocation and Deallocation (and)

To create an object on the Heap (Dynamic Storage Duration), you use the operator. allocates memory

and calls the object's constructor. It returns a raw pointer to the newly created object.

// Allocation on the Heap
// ptr points to a Heap object. Its lifetime is independent of its scope.
Point* ptr = new Point(10, 20);

// Access members via the arrow operator (syntactic sugar for (*ptr).x)
ptr->x = 50;

The / Contract

Because the C++ heap is unmanaged, you are entirely responsible for cleaning up memory allocated with
You must call on the pointer when you are finished with the object.

// Deallocation: calls the object's destructor, then frees the memory.
delete ptr;

// After deletion, ptr is a dangling pointer (see 6.4)
// ptr = nullptr; // Best practice: reset the pointer after deletion

3/21

part3.md 2025-10-03

Array Allocation and Deallocation

If you allocate an array of objects on the heap, you must use the array form of and the array form of

// Array Allocation: Allocates an array of 5 Point objects on the Heap
Point* points_array = new Point[5];

// Array Deallocation: MUST use delete[] to call the destructor for ALL 5 objects

delete[] points_array;
// delete points_array; // ERROR/Undefined Behavior: Destructor only called for

the first element, risking memory leaks.

6.4 Dangers: Memory Leaks, Double Deletion, and Dangling Pointers

The contract of manual memory management is fraught with peril. These errors are often silent at runtime but
catastrophic for stability, and they are the primary reason Modern C++ avoids raw pointers for object

ownership.

1. Memory Leaks

A memory leak occurs when memory is allocated on the heap but is never freed by , usually because

the pointer owning the memory goes out of scope.

void leaky function() {
Point* p = new Point(1l, 1);
// ... function exits here ...
// 'p' (the pointer) goes out of scope and is destroyed,
// but the Point object on the Heap is NOT deleted.
// The memory is now inaccessible—a leak.

2. Double Deletion

Double deletion occurs when is called more than once on the same pointer address.

Point* p = new Point(1, 1);

delete p;

// ... later ...

// The memory has been returned to the system, but the pointer still holds the

address.
delete p; // CRASH! (Undefined Behavior, usually a heap corruption error)

3. Dangling Pointers
4121

part3.md 2025-10-03

A dangling pointer is a pointer that points to a memory location that has already been freed.

Point* pl = new Point(1, 1);
Point* p2 = pl; // p2 now also points to the same object
delete p1; // The memory is freed

// Now p2 is a dangling pointer. Using *p2 here is Undefined Behavior.
p2->x = 5; // CRASH or corrupted data!

These inherent risks are why the guiding principle of C++ is: "Never use raw pointers to manage
ownership; use smart pointers instead.” (Chapter 9)

6.5 C-style Arrays, Pointer Arithmetic, and Decaying

Raw pointers are closely linked to the legacy C-style array (). While Modern C++ prefers
(dynamic) or (static), understanding C-style arrays is necessary.

C-style Arrays
C-style arrays are fixed-size and lack bounds checking, unlike C# arrays:
int data[10]; // An array of 10 integers (fixed size on the stack)

data[10] = 5; // No error from the compiler, but this is a serious error (Buffer
Overflow).

Array Decaying

A fundamental concept is array decay: when a C-style array is passed to a function or assigned to a pointer, it
automatically decays into a raw pointer to its first element.

void process_array(int {
// This function has no idea that the array originally had 10 elements.

int main {
int arr[10];
process_array(arr); // arr decays to an int* pointing to arr[0]
return 0;

Pointer Arithmetic

Because arrays and pointers are intertwined, you can perform arithmetic directly on pointers to move through
memory:

5/21

part3.md 2025-10-03

int arr[] = {10, 20, 30};
int* p = arr;

p++;

<< "Value: << *p << "\n";

The increment actually increments the memory address by bytes, making pointer arithmetic
type-aware. This low-level capability is powerful but is another vector for buffer overflow errors if bounds are
not manually checked.

Key Takeaways
* Heap Requires new/ : Memory allocated on the Heap using has Dynamic Storage
Duration and must be explicitly released using (or for arrays).
. is Modern Null: Always initialize raw pointers to (C++11) to safely indicate a non-

pointing state. Avoid the C-style

* The new/ Contract: You must pair with and with to
avoid Undefined Behavior and memory leaks.

* Raw Pointer Ownership is Dangerous: The use of raw pointers for ownership leads directly to the
three great dangers: memory leaks, double deletion, and dangling pointers.

* Array Decay: C-style arrays automatically decay into raw pointers to their first element, enabling
pointer arithmetic but sacrificing compile-time size information and bounds checking.

Exercises

1. Memory Leak Simulation: Write a function that allocates a large array of 1,000
integers on the heap using , but forgets to call

© Task: Explain why this specific function call leads to a memory leak and where the memory is lost
(which region?).

© Hint: The pointer holding the address is destroyed on the stack, but the memory on the heap
remains allocated and unreachable.

2. Dangling Pointer Creation: Write a simple program where a pointer p1 is created, a second pointer
is assigned to p1, and then is called.

O Task: Reset the pointer p1 to immediately after deletion, but leave n2 pointing to the
old address. Explain why p2 is now a dangling pointer.
© Hint: The memory is gone, but the address in p2 is still the same.

3. Pointer Arithmetic Safety: Declare a C-style array . Declare a

© Task: Use pointer arithmetic () and then try to print *p. Explain the potential for
Undefined Behavior (or a crash) from this operation.
o Hint: You have moved the pointer outside the bounds of the original array, accessing unowned

memory.
6/21

part3.md 2025-10-03

4. Allocation Mismatch: Write a function that calls but mistakenly calls (the
single-object form) instead of

© Task: Explain the specific C++ rule that is violated and the consequence (which is likely
Undefined Behavior).

© Hint: The array form of is required to properly call the destructors and manage the
metadata for the array allocation.

7. Value Categories and References Deep Dive

Part Il is dedicated to maximizing performance and safety in C++. The foundation of the C++ optimization
strategy—Move Semantics—rests on a deep understanding of Value Categories. These categories
determine an object's identity, lifetime, and, critically, whether its internal resources can be stolen instead of
copied.

7.1 Lvalues, Rvalues, and Prvalues: Defining Object Identity

Every expression in C++ results in a value that belongs to one of three primary value categories (Lvalue,
Rvalue, Prvalue). This is known as the Lvalue/Rvalue dichotomy.

Lvalues (Left-hand side values)

An Lvalue (ℓvalue) is an expression that designates a named, identifiable region of storage (a memory
location) that persists beyond the current expression. Lvalues have identity and can be assigned to.

* Rule: If you can take the address of an expression using the & operator, it's generally an Lvalue.
e Examples: Named variables, references (, x is an Lvalue), functions returning an Lvalue
reference, class member access.

int x = ;
int& ref = x;
int* ptr = &x;

Rvalues (Right-hand side values)

An Rvalue (rvalue) is a temporary value that is the result of an expression and is about to expire. Rvalues do
not have a permanent, identifiable memory location that can be accessed later. They are often created on the
stack only for the duration of a single expression.

* Rule: You generally cannot take the address of an Rvalue.
¢ Examples: Literal values (19,), the result of arithmetic operations (), functions returning
by value ().

int result = x + 5;

7121

part3.md 2025-10-03

The Modern Taxonomy (C++11/17)

For the purposes of Move Semantics, the categories are refined:

¢ $PS%rvalue (Pure Rvalue): A temporary object produced by an expression (e.g.,)-
* XSvalue (eXpiring Value): An object that has an identity but whose resources are about to be
destroyed and can thus be "stolen" (e.g., the result of).

Glvalue (Generalized Lvalue): The union of Lvalues and Xvalues (objects that have identity).
Rvalue: The union of Prvalues and Xvalues (objects whose contents can be moved from).

The critical takeaway: Rvalues (Prvalues and Xvalues) are the targets of move semantics.

7.2 The Need for Rvalue References

Before C++11, an Lvalue reference (72) was the only way to pass an object without copying it (Chapter 4.4).
However, Lvalue references cannot bind to Rvalues (temporaries), because binding to a temporary
would allow its value to be modified—a violation of its transient nature.

void foo(int { }

int get_ten() { return .

Rvalue references (7%%) were introduced to solve this. An Rvalue reference is a new kind of reference that
can bind only to Rvalues. This allows the compiler to specifically target temporary objects, enabling the
efficient theft of resources (moving).

void bar(int { }

int get_ten() { return I

bar(get_ten());

The ability to bind an Rvalue reference to a temporary object is the mechanism that makes move
constructors and move assignment operators (Chapter 8) possible.

7.3 Reference Collapsing and Forwarding References

When writing generic code (templates), it's often necessary to accept parameters that can be either an
Lvalue or an Rvalue. This is where Forwarding References and Reference Collapsing come into play.

Forwarding References (formerly Universal References)

8/21

part3.md 2025-10-03

A Forwarding Reference is a template parameter declared as an Rvalue reference (1%2) where 7 is a
deduced template type.

template <typename T>
void generic_func {

When you call , the compiler deduces T and applies the reference collapsing rules to
determine the final type of

Reference Collapsing Rules

These rules dictate what happens when you combine two references (which only happens during template
type deduction):

Original Call Type Deduced T Final Type of (T22) Collapsed Result
Lvalue () \rightarrow (Lvalue reference)
Rvalue () \rightarrow (Rvalue reference)

* The Key Rule: An Lvalue reference combined with anything always results in an Lvalue reference.
Only combining two Rvalue references results in an Rvalue reference.

This means a single signature () can accept and preserve the exact value category (Lvalue or
Rvalue) of the original argument.

7.4 The Utility (A Cast, Not a Move)

The name is highly misleading. It does not perform any data movement. It is a simple,
unconditional cast to an Rvalue reference.

template <typename T>
typename ::remove_reference<T>: :type&& move noexcept {
return static_cast<typename ::remove_reference<T>: :type&&>(t);

The Purpose of
is used to convert an Lvalue into an Xvalue (an expiring value). This tells the compiler, "I know this

is a named variable, but please treat it as a temporary so its resources can be stolen by a move constructor."

<int> source = {1, 2, 3};

9/21

part3.md 2025-10-03

<int> destination = ::move(source);

7.5 The Utility

When using Forwarding References (Section 7.3) in generic code, we run into a problem: the generic
parameter inside the function body is always an Lvalue (it has a name inside the function). If we used

to pass it to another function, we would unconditionally cast it to an Rvalue reference,
which is wrong if the original argument was an Lvalue that should be copied.

solves this by performing a conditional cast.

® It checks the type T that was deduced by the reference collapsing rules.

e |f T was deduced as an Lvalue reference (), casts the parameter back to an
Lvalue reference (preserving the ability to copy).

e |f T was deduced as a pure type (i nt), which happens when an Rvalue was passed,
casts the parameter back to an Rvalue reference (enabling moving).

This is known as Perfect Forwarding: the inner function receives the argument with the exact same value
category (Lvalue or Rvalue) as was passed to the outer function.

template <typename T>
void wrapper {

process_resource(::forward<T>(arg));

Key Takeaways

* Lvalues vs. Rvalues: Lvalues have identity (names and addresses); Rvalues are temporary, transient
results.

* Rvalue References (7%2): This new type of reference binds only to Rvalues (temporaries), making
it the essential mechanism to intercept and steal resources from objects about to be destroyed.

* Forwarding References: A specific form of in template contexts that uses reference collapsing to
perfectly preserve the Lvalue/Rvalue nature of the original argument.

. is a Cast: is an unconditional cast that converts a named Lvalue into an
Rvalue, enabling its contents to be moved from. It does not perform the actual data transfer.

o is Conditional: is used within generic code (templates) to conditionally
cast a forwarding reference back to its original value category, enabling perfect forwarding (copy if
Lvalue, move if Rvalue).

Exercises

10/21

part3.md 2025-10-03

1. Identify Value Categories: For each expression below, state whether the result is an Lvalue or an
Rvalue.

o

Hint: Only named variables and dereferenced pointers/references are Lvalues. always
yields an Rvalue.

2. Rvalue Reference Binding Failure: Write a small program with two variables, and
. Attempt to declare an Rvalue reference:

o Task: Observe the compiler error. Explain why an Rvalue reference cannot be initialized with
the Lvalue

o Hint: Binding an Rvalue reference to an Lvalue would let you modify a named object via a
mechanism intended only for temporaries.

3. The Misleading : Create a simple struct with a string member. Write a function
that takes an Rvalue reference. In , Create a
o Task: Call the function using . Explain why d1 is an Lvalue before the

call but is treated as an Rvalue during the call.
© Hint: is a cast that changes the expression type, not the variable type.

4. Reference Collapsing Test: Given the function template

o Task: Call with and then with . For each call, state the deduced type
of T and the final, collapsed type of
© Hint: Passing an Lvalue deduces T as $T&$; passing an Rvalue deduces T as T.

8. Move Semantics and State Control

Move Semantics is the performance optimization technique that defines Modern C++ development. It
enables objects to transfer ownership of expensive internal resources—like large memory buffers or file
handles—instead of wasting time performing a deep copy. This concept relies entirely on Value Categories
(Chapter 7) to distinguish between temporary objects (safe to steal from) and named objects (must be
copied).

8.1 Deep vs. Shallow Copy Review

When an object contains a raw pointer to dynamically allocated resources (e.g., a buffer on the heap), there
are two ways to copy that object:

1. Shallow Copy (The Default): Only the object itself (and the raw pointer within it) is copied. Both the
original and the copy point to the same underlying resource. This is what the compiler provides by
default and is catastrophic for resource management.

1/21

part3.md 2025-10-03

© Danger: When the destructor is called on both the original and the copy, it results in double
deletion of the shared resource, leading to a crash (Chapter 6.4).

2. Deep Copy: Both the object and the resource it points to are copied. A new, independent resource is
allocated, and the data is copied into it. The original and the copy are now completely independent.

© Requirement: If your class manages a raw resource (a raw pointer), you must implement deep
copying yourself.

8.2 The Copy Constructor and Copy Assignment Operator

To implement deep copying, you must define the two special member functions that handle Lvalue-
to-Lvalue (named object-to-named object) duplication:

1. The Copy Constructor ()

Called when a new object is initialized from an existing object (e.g., or or when passing by

value).

class ResourceWrapper {

private:
int* data_ = g
size t size = 0;
public:
// ... Constructor, Destructor ...

// The Copy Constructor: Performs a deep copy
ResourceWrapper(const ResourceWrapper& other) : size (other.size_) {
o << "Copy Constructor (Deep Copy)\n";
data_ = new int[size_]; // 1. Allocate a NEW resource
::copy(other.data_, other.data + size , data); // 2. Copy the data

}
¥
2. The Copy Assignment Operator ()
Called when an existing object is assigned the value of another existing object (e.g.,). This

requires care to manage the existing resource.

// The Copy Assignment Operator: Manages existing resources
ResourcelWrapper& operator=(const ResourceWrapper& other) {
<< "Copy Assignment Operator\n";
if (this != &other) { // 1. Check for self-assignment (a = a)

delete[] data_; // 2. Release the existing resource

size = other.size ;

data_ = new int[size_]; // 3. Allocate new resource

::copy(other.data_, other.data_+ size , data_); // 4. Copy data

12721

part3.md 2025-10-03

return *this; // 5. Return reference to self

8.3 The Move Constructor and Move Assignment Operator

Move Semantics is implemented via two special member functions that accept an Rvalue reference (1:2)
as a parameter (Chapter 7).

Instead of allocating memory and copying data, they perform the Move operation:

1. Theft: Copy the internal resource pointer (the raw pointer) from the source object.
2. Pacification: Set the source object's internal resource pointer to

By nulling out the source's pointer, the source's destructor (when called) will safely attempt to
, Which is guaranteed to do nothing, preventing the resource from being destroyed twice.

1. The Move Constructor ()

Called when a new object is initialized from an Rvalue (e.g., a function return, or an object explicitly cast
with).

// The Move Constructor: Steals resources from an expiring Rvalue
ResourceWrapper (ResourcelWrapper&& other) noexcept
: data_(other.data_), size (other.size) { // 1. Steal the resource

. << "Move Constructor (Theft)\n";
other.data_ = ; // 2. Pacify the source (null its pointer)

other.size = 0; // 3. Clear source size
}
2. The Move Assignment Operator ()

Called when an existing object is assigned the value of an Rvalue.

// The Move Assignment Operator
ResourcelWrapper& operator=(ResourceWrapper&& other) noexcept {
B << "Move Assignment Operator\n";
if (thls I= &other) { // 1. Check for self-assignment (optional for move)
delete[] data_; // 2. Release the existing resource held by *this*

// 3. Perform the theft
data_ = other.data_;
size = other.size ;

// 4. Pacify the source

other.data_ = 9
other.size_ = 0;

13721

part3.md 2025-10-03

return *this;

}
Note: Move operations are typically marked with to inform the compiler that they will not throw
exceptions.
8.4 Compiler-Generated Defaults and Explicit Deletion (,

)

The C++ compiler automatically generates the four/five special member functions unless certain conditions
are met (e.g., if you declare a destructor, the compiler will suppress the default move functions).

Modern C++ provides tools to control this generation explicitly:

Keyword Use Description

Explicitly request the compiler to generate the standard default implementation
for a special member function. Used to gain back a default implementation that
was suppressed by other code.

Explicitly prevent the compiler from generating or using a special member
function.

Example: Making a Move-Only Class

If a resource cannot be copied (e.g., a unique file lock), you can enforce that by deleting the copy operations:

class UniqueResource {
public:
UniqueResource() = default;

// Explicitly delete copy operations
UniqueResource(const UniqueResource&) = delete;
UniqueResource& operator=(const UniqueResource&) = delete;

// Use default move operations
UniqueResource(UniqueResource&®&) = default;
UniqueResource& operator=(UniqueResource&&) = default;

}s

This pattern is common; it forces users to use if they need to transfer ownership, similar to how
Ci#'s often requires explicit closure or scope usage.

8.5 The Rule of Zero/Three/Five: Modern Class Design

The C++ community has codified the rules for managing the special member functions into clear design
principles:

14 /21

part3.md 2025-10-03

1. The Rule of Five (Pre-C++11/Legacy Design)
If you must manage a raw resource (like a raw pointer), you must deal with five specific operations:

1. Destructor

2. Copy Constructor

3. Copy Assignment Operator
4. Move Constructor

5. Move Assignment Operator

If you define any one of these, you must define them all to ensure proper resource management and prevent
the disastrous effects of a shallow copy combined with a raw pointer.

2. The Rule of Three (Pre-C++11)

The rule of five's predecessor, which only mandated the first three (Destructor, Copy Constructor, Copy
Assignment Operator) because move operations didn't exist yet.

3. The Rule of Zero (Modern C+ + Best Practice)
The goal of Modern C++ is to avoid the complexity of the Rule of Five entirely by following the Rule of Zero:

A class that manages a resource should define zero custom special member functions. Instead, it
should delegate resource management to a member that already handles it.

This is achieved by storing raw resources inside smart wrappers (like or).
Since these wrappers already implement the Rule of Five safely (they deep copy/move correctly), the
compiler-generated default copy and move operations for the containing class will automatically call the safe,
correct operations on the member wrappers.

Recommendation: Strive to follow the Rule of Zero by using containers and Smart Pointers (Chapter 9) for
all resources. Only resort to the Rule of Five when implementing the resource manager itself (e.g., the smart
pointer class).

Key Takeaways

* Move vs. Copy: Copy Semantics performs expensive deep duplication. Move Semantics performs
cheap resource theft (shallow copy of pointers followed by nulling the source).

* The Four Functions: Move Semantics requires defining the Copy Constructor (), Copy
Assignment Operator (), Move Constructor (722), and Move Assignment Operator (722).

* The Move Operation: The core of moving is taking the raw pointer from the Rvalue source and
setting the source's pointer to to prevent double deletion.

* Control Defaults: Use to regain a compiler-generated function and to suppress

an unwanted operation (e.g., making a class move-only).
* Rule of Zero: The ultimate goal. Design your classes to manage no raw resources directly; instead,
delegate resource management to members that handle it correctly (like smart pointers).

Exercises

15721

part3.md 2025-10-03

1. Shallow Copy Failure: Implement the class from the chapter, including a
constructor that allocates an integer array and a destructor that calls . Do not write a custom
copy constructor or assignment operator.

o Task: In , Create two wrappers, and .
Run the program and observe the crash. Explain why the compiler's default shallow copy failed.
© Hint: The program will crash due to double deletion of the same heap resource.

2. Enforcing Move-Only: Take a simple class and delete its copy constructor and copy
assignment operator using the syntax.
© Task: Try to pass an instance of to a function by value. The compiler should fail. Explain

why this design choice is useful for objects like file handles or network connections.
© Hint: Copying resources like file handles is often illogical; they should be unique or transferable.

3. Manual Move Implementation: Complete the implementation of the class by
adding the Move Constructor and setting the source pointer to

© Task: In , initialize a new object using . Verify
that is now and no copy was performed.
© Hint: The move constructor should execute, and the copy constructor should not.

4. The Rule of Zero Design: Consider a class that needs to manage a pointer to a
object.
© Task: Sketch the definition of the class by making the member into an

. Explain why this new design adheres to the Rule of Zero and
requires no custom copy/move/destructor code.
© Hint: The handles the destructor and move semantics automatically, and it deletes
copy semantics, which the compiler-generated defaults inherit.

9. Smart Pointers and RAII

The journey through raw pointers, move semantics, and the dangers of manual memory management
(Chapters 6, 7, 8) culminates here. Smart Pointers are the primary mechanism for implementing the core C++
memory safety paradigm known as RAIl. You should use smart pointers for virtually all heap allocations in

modern C+ +.

9.1 The RAIl Principle: Resource Acquisition Is Initialization

RAIl (Resource Acquisition Is Initialization) is the single most important idiom in C++ for safe resource
management. It is the C++ answer to the problem solved by garbage collection (GC), but it achieves
deterministic, rather than probabilistic, cleanup.

The principle states that resource ownership must be tied to the lifetime of a stack-based object.

The RAIl Mechanism (The C++ Safety Net)

1. Acquisition: The resource (e.g., heap memory, a file handle, a network lock) is acquired in the
constructor of a stack-allocated wrapper object.

16/21

part3.md 2025-10-03

2. Initialization: The wrapper object is initialized on the Stack (Automatic Storage Duration).

3. Guaranteed Release: When the stack-allocated wrapper object goes out of scope (e.g., the function
returns or a block exits), its destructor is guaranteed to be called deterministically (Chapter 5.3).

4. Release: The destructor contains the code to safely release the resource (e.g., calling , closing
the file, or releasing the lock).

Smart pointers are RAIl wrapper classes designed to manage heap memory, ensuring that is called
automatically when the pointer object leaves scope, eliminating the possibility of memory leaks from
forgetting

9.2 : Exclusive, Transferable Ownership

is the preferred and most efficient smart pointer, designed for situations where an object
on the heap has only one owner.

Characteristics

* Exclusive Ownership: Only one can point to the resource at a time.

® Zero Overhead: At runtime, a is exactly the same size and speed as a raw pointer. It
has no runtime overhead compared to manual

* Move-Only Semantics: It cannot be copied (it deletes its copy constructor, Chapter 8.4). Its ownership

can only be transferred using move semantics (or returning from a function).

<int> data = : :make_unique<int>(10);

<int> new_owner = ::move(data);

The ability to return a from a function is key: it returns the resource by value, which implicitly
invokes the fast move constructor (Chapter 8.3) to transfer ownership to the caller.

9.3 VS.

While you can construct a directly using , the standard factory function
(C++14) is strongly preferred for safety and efficiency.

Exception Safety

Using ensures exception safety. Consider the unsafe construction:

1717121

part3.md

2025-10-03

process(o <T>(new T()), some_func());

In the unsafe line, the compiler might perform the steps out of order:

1.

If

: Memory is allocated.
: This function runs.
: The smart pointer is constructed.

throws an exception after the raw memory is allocated but before the smart pointer is

constructed, the raw memory is never wrapped and is permanently leaked.

performs the memory allocation and the smart pointer construction in a single, atomic

step, guaranteeing that if an exception occurs, no memory is leaked.

Best Practice: Always use for creating objects.

9.4

: Shared Ownership and Reference Counting

is designed for complex scenarios where multiple, non-exclusive owners need to share a

resource on the heap.

Characteristics and Overhead

Shared Ownership: Multiple objects can point to the same resource.

Reference Counting: The resource is only deleted when the last pointing to it is
destroyed or reset. This requires runtime overhead in the form of a control block.

Control Block: A separate, small allocation alongside the object that contains the reference count and
the weak count.

<int> pl = : :make_shared<int>(50);

<int> p2 = pi;
Because of the reference counting overhead, is preferred unless true shared ownership is
necessary.
9.5 for Performance and Safety
Similar to , is the safe factory for , but it provides a critical
performance benefit: single-allocation optimization.

Single Allocation

When

using for

181721

part3.md 2025-10-03

1. Allocation 1: The object itself ().
2. Allocation 2: The control block (reference count, weak count).

When using

* Single Allocation: Both the object and the control block are allocated in a single block of contiguous
memory.

This reduces the total memory required, improves memory locality (leading to better cache performance), and
is exception-safe.

Best Practice: Always use for creating objects.
9.6 : Observer Pointers and Breaking Circular References
A is a non-owning observer pointer designed to monitor a resource managed by a

Characteristics and Use

* Non-Owning: A does not affect the 's reference count.
¢ Safe Access: You cannot directly dereference a . To safely access the resource, you must call
its method, which returns a temporary if the resource still exists. If the
resource has been deleted, returns
The primary use case for is preventing circular references, which are the only way to cause a

memory leak with

Breaking Circular References

A circular reference occurs when two objects manage each other via

class Parent;
class Child {

public:

<Parent> parent_ptr;
}s
class Parent {
public:

<Child> child_ptr;
¥

If o owns ¢ and ¢ owns p, the reference count for both will never drop to zero (it will stay at 1), and neither
object's memory will ever be freed.

Solution: The weaker link in the relationship (e.g., the back-reference from the child to the parent) must be
changed to a

19/21

part3.md 2025-10-03

class Parent { }s
class Child {
public:

::weak_ptr<Parent> parent_ptr;

}s
The allows the connection without maintaining the reference count, ensuring that when all external
s are destroyed, the memory is safely cleaned up.
Key Takeaways

¢ RAIll is the C++ Safety Net: Resource Acquisition Is Initialization is the core idiom. Smart pointers
are stack-allocated wrapper objects whose destructors guarantee resource release.

o is the Default: Use for exclusive, single ownership. It is efficient,
has zero runtime overhead, and is move-only.

. is Standard: Always use to create for exception
safety.

. Has Overhead: Use only when true shared ownership is
required, as it imposes overhead via the reference counting control block.

. is Better: Always use for to gain the performance
and memory benefits of single-allocation optimization.

o Breaks Leaks: Use as a non-owning observer, primarily to break
circular references between objects, preventing memory leaks.

Exercises

1. Unique vs. Shared Ownership: Write two blocks of code. In the first, try to copy a
()- In the second, try to copy a

© Task: Explain the compiler's response in the first case and the runtime mechanism in the second
case.
° Hint: has deleted its copy constructor. increments its reference count.

2. Resource Release: Create a simple class with a destructor that prints its name. Write
a function where you create an instance of this class on the heap using

© Task: Show that the destructor is called automatically when the function returns, proving the RAI
principle. Then, call on the unique pointer before the function returns. Observe
that the destructor is not called. Explain why defeats the RAIl guarantee.

° Hint: returns the raw pointer without deleting the resource, making the memory leak

your responsibility.

3. The Access: Create a named .Create a
named that monitors . Reset to
© Task: Try to access the string's content directly through . Then, try to access it via
. Explain why the direct access fails and why is the only safe way.

20/21

part3.md 2025-10-03

o Hint: converts the observer into a temporary that safely checks if the
resource is still alive.

4. Circular Reference Creation: Model the and classes from Section 9.6, initially using

for both the forward and backward references.

© Task: Create instances of both, assign them to each other, and let them go out of scope. (You'll
need a way to detect the leak, like printing a message in their destructors). Explain why the
destructors are never called.

© Hint: The cycle means the reference count for each object is permanently held at 1 by the other
object.

Where to go Next

Part I:: The C++ Ecosystem and Foundation: This section establishes the philosophical and technical
underpinnings of C++, focusing on compilation, linking, and the modern modularization system.

Part II: Core Constructs, Classes, and Basic 1/0: Here, we cover the essential C++ syntax, focusing on
differences in data types, scoping, correctness, and the function of lvalue references.

Part lll: The C++ Memory Model and Resource Management: The most critical section, which
deeply explores raw pointers, value categories, move semantics, and the indispensable role of smart
pointers and the **RAII** idiom.

Part IV: Classical OOP, Safety, and Type Manipulation: This part addresses familiar object-oriented
concepts like inheritance and polymorphism, emphasizing C++'s rules for **exception safety** and
type-safe casting.

Part V: Genericity, Modern Idioms, and The Standard Library: Finally, we explore the advanced
capabilities of templates, C++20 Concepts, lambda expressions, and the power of the Standard
Library containers and **Ranges** for highly generic and expressive code.

Appendix: Supplementary materials including coding style guidelines, compiler flags, and further
reading.

21721

file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part1.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part2.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part3.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part4.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part5.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/appendix.md

