part4.md 2025-10-03

Part IV: Classical OOP, Safety, and Type Manipulation

This part delves into advanced object-oriented programming concepts and type safety in C++. Chapters 10
through 13 guide you through robust error handling with exceptions, the nuances of inheritance and
polymorphism, and the mechanisms for safe and explicit type conversions. You'll learn how C++ enforces
exception safety, how to design class hierarchies with virtual functions and destructors, and how to use
casting operators and run-time type information responsibly. By mastering these topics, you'll be equipped to
write safer, more maintainable, and idiomatic C++ code that leverages the language's powerful type system.

Table of Contents

10. Error Handling and Exceptions

* 10.1 Throwing and Catching Exceptions

* 10.2 Creating Custom Exception Classes

¢ 10.3 Exception Safety Guarantees (Strong, Basic, Nothrow)
® 10.4 The Role of and

11. Inheritance and Polymorphism

* 11.1 Public, Protected, and Private Inheritance

¢ 11.2 Virtual Methods and Dynamic Dispatch

¢ 11.3 Abstract Base Classes and Pure Virtual Functions (Interfaces)
* 114 The and Specifiers

* 11.5 Virtual Destructors and Deleting Polymorphic Objects

¢ 11.6 Virtual Inheritance (The Diamond Problem Solution)

12. Type Conversions and Explicit Constructors

¢ 12.1 Implicit Type Conversions (Promotion and Conversion)
® 12.2 User-Defined Conversion Operators

* 12.3 Preventing Conversions with the Keyword

® 12.4 Uniform Initialization and

13. Casting Operators and RTTI

* 13.1 C-Style Casts: Why They Are Dangerous

e 132 : Compile-Time Conversions
e 133 : Run-Time Polymorphic Checking
e 134 and : High-Risk Operations

® 13.5 Run-Time Type Information (RTTI) and

10. Error Handling and Exceptions

Like most modern languages, C++ uses exceptions as the primary mechanism for signaling and handling
errors that occur outside the regular flow of control. While the mechanics of try/ / will be familiar

1/22

part4.md 2025-10-03

to you, C++ exception handling is unique due to its integration with the RAII principle (Chapter 9) and the
resulting focus on Exception Safety Guarantees.

10.1 Throwing and Catching Exceptions
The fundamental syntax for throwing and catching exceptions is highly similar to C#.

Throwing

You can throw any expression, but it's best practice to throw an object derived from

void validate input(int {
if (value < 9) {
// Throw an object derived from std::runtime_error

throw ::runtime_error("Input value cannot be negative.");
}
}
Catching
You use and blocks. The crucial best practice in C++ is to catch exceptions by reference.
void process data(int {
try {
validate input(val);
// ... rest of logic ...
}
// Catching by const reference avoids slicing and unnecessary copying.
catch (const ::runtime_error& e) {
<< "Runtime Error: " << e.what() << "\n";
// Optionally re-throw the original exception
// throw;
}
// Catching all others (ellipses) should be avoided where possible
catch (...) {
- << "An unknown exception occurred.\n";
}
}
Catching by is vital because catching by value can lead to slicing (where the

derived exception object is truncated to its base class type) and unnecessary object copying.

10.2 Creating Custom Exception Classes

2122

part4.md 2025-10-03

For application-specific error conditions, you should create custom exception classes that derive from a
standard base class.

. : Used for errors that should have been preventable by the programmer (e.g.,
passing a null pointer, bounds check failures).

. : Used for errors that are generally unavoidable and occur during program
execution (e.g., file not found, network connection lost).

The standard exception classes provide a method that
returns a descriptive string.

class AccountNotFoundException : public ::runtime_error {
public:

AccountNotFoundException(int account_id)

::runtime_error("Account ID " + ::to_string(account_id) +

3 not
found.") {}

}s

10.3 Exception Safety Guarantees

In C++, when an exception is thrown, the compiler performs stack unwinding: it walks up the call stack,
invoking the destructor of every object with Automatic Storage Duration (Chapter 3.3) until a matching
block is found. This is the RAIl mechanism at work, ensuring that resources are released.

Since destructors are guaranteed to be called, C++ code is categorized by how well it maintains the system's
state during this process. This leads to three levels of Exception Safety Guarantees:

1. The No-throw Guarantee (The Strongest)
The function is guaranteed not to throw an exception under any circumstance.

* Mechanism: Achieved by functions that only use primitive types, or by functions explicitly marked
(Section 10.4).
* Ideal Use: Destructors, swap functions, and move operations (Chapter 8).

2. The Strong Guarantee (The Rollback)

If the function throws an exception, the program state remains exactly as it was before the function was
called. The operation either fully succeeds or fully fails with no side effects.

* Mechanism: Often implemented using the copy-and-swap idiom (creating a copy of the state,
modifying the copy, and swapping the original with the copy only if the entire operation succeeds).
3/22

part4.md 2025-10-03

* Desirable Outcome: Prevents corruption; difficult to achieve in practice.

3. The Basic Guarantee (The Minimum)

If the function throws an exception, no resources are leaked (thanks to RAIl), and the program remains in a
valid, usable state, but the exact data/values may be unpredictable.

* Mechanism: Achieved by making sure every resource is wrapped in an RAIl object (like
or).
¢ Minimum Requirement: All C++ code should achieve at least the Basic Guarantee.

Takeaway: The purpose of RAIl (Smart Pointers, Containers) is to automatically deliver the Basic Guarantee. If
an exception occurs, the destructors are called, and heap memory is safely cleaned up, preventing memory

leaks.
10.4 The Role of and
The keyword is an exception specification that plays two key roles: providing clarity and enabling

optimization.
as a Promise

When a function is marked , you are making a promise to the compiler that the function will not
emit an exception.

void do safe operation noexcept {

The Optimization: Avoiding Stack Unwinding Code

If the compiler knows a function will not throw, it can omit the expensive code required to unwind the stack
(the logic to find and call all destructors) upon exception. This is a significant performance gain, especially for
functions called frequently, like standard library functions.

Critical Consequence: If a function promised throws anyway, the C++ runtime does not attempt to
unwind the stack. It immediately calls , which typically stops the program immediately.
This is safer than continuing with a corrupted state, but it is a program crash.

and Move Semantics
The guarantee is essential for the performance of standard library containers (like).

When a grows, it must move its elements to a new, larger block of memory. If the element's
move constructor is marked , the vector knows it can safely move the elements without worrying
about an exception corrupting the vector's state. If the move constructor is not marked , the vector
defaults to the slower copy operation to maintain the Strong Guarantee.

4122

part4.md 2025-10-03

Best Practice: All move constructors and move assignment operators (Chapter 8) should be marked
unless they truly must throw an exception.

Conditional

The form is used to conditionally specify no-throw based on a compile-time boolean
expression:

template <typename T>
void swap_values noexcept {

This allows generic code to be exception-safe without sacrificing performance.

Key Takeaways

* Catch by Reference: Always catch exceptions by (usually)
to avoid object slicing and unnecessary copying.

¢ RAII Delivers Basic Safety: The RAIl principle (automatic destructor calls upon stack unwinding)
ensures the Basic Guarantee by preventing resource leaks.

* Strong Guarantee is the Goal: The Strong Guarantee (transactional rollback) is achieved by design
patterns like copy-and-swap, ensuring state is consistent even after a failure.

. is a Promise and an Optimization: Mark a function if it won't throw. This allows
the compiler to optimize by omitting stack unwinding code.
* Breaking Crashes: If a function throws, the program immediately terminates via
, avoiding expensive and potentially unsafe unwinding. Always make move
operations
Exercises
1. Catching by Value vs. Reference: Write a custom exception class that inherits from
. In your function, throw an instance of
© Task: Catch the exception first by value (), then by reference (
). Observe that the first version only sees the
part of the object (slicing), while the second sees the full type.
© Hint: Use to show the different behaviors.
2. RAIl and Exception Safety: Create a class that prints "Acquired" in its constructor and "Released"
in its destructor. In a block, create an instance of , and then immediately
© Task: Observe that the "Released" message prints before the block executes. Explain how

this demonstrates RAIl providing the Basic Exception Safety Guarantee.
© Hint: The lock object's destructor is called during stack unwinding before control transfers to the
handler, preventing a resource leak.

5/22

part4.md 2025-10-03

3. The Effect of : Write two identical functions: and
. In the body of each,

o Task: Wrap both function calls in separate blocks. Explain what happens when you
run the program (one function should lead to)-
© Hint: The function breaks its promise, resulting in an immediate call to
, skipping the local block.

4. Implementing the Strong Guarantee (Conceptual): Explain how you would modify a class
(which holds a raw array) to achieve the Strong Guarantee for its method, which might
throw if the new memory allocation fails.

o Task: Describe the copy-and-swap approach that must be used.
© Hint: The allocation and copy operation must happen on a temporary internal buffer. Only if the
whole process succeeds is the temporary buffer swapped into the main object's state.

11. Inheritance and Polymorphism

Inheritance and polymorphism are the cornerstones of Object-Oriented Programming (OOP) in C++, just as
they are in C#. However, C++ requires more explicit keywords to enable run-time polymorphism and offers

different, more powerful, yet more complex mechanisms for controlling inheritance and memory safety.

11.1 Public, Protected, and Private Inheritance

C++ allows a derived class to inherit from a base class using three distinct access modes, specified before the
base class name. This mode affects the maximum access level of the base class members within the derived

class.
Mode of . . .)
] Meaning Effect on Base Members in Derived Class Typical Use

Inheritance
Is-A relationship Preserves original access level (stays Standard class
(Standard OOP) , stays). extension.
Base Restricting public

members stay .

members become access to the

are still inaccessible.])]
inheritance chain.

Base and Used for Implementation Detail (Is- Rarely used;
members Implemented-In-Terms-Of). Users of the prefer
become . derived class cannot see base members. composition.

Example of Public Inheritance (Standard)

class Base {
public:

int public_val = 1;
protected:

int protected_val = 2;

6/22

part4.md 2025-10-03

private:
int private_val = 3;

}s

// Derived class inherits publicly: public_val is still accessible publicly via
Derived objects
class Derived : public Base {
public:
void access members() {
std::cout << public_val; // OK (public)
std::cout << protected_val; // OK (protected)
// std::cout << private val; // ERROR: private member inaccessible

}s

Best Practice: Always use inheritance unless you have a strong, specific reason to hide the base
class's interface (e.g., implementing the Adapter pattern via private inheritance).

11.2 Virtual Methods and Dynamic Dispatch

In C++, methods are non-virtual by default. To enable run-time polymorphism (the ability to call the
correct derived method through a base-class pointer or reference), you must use the keyword on the
base class function.

The Mechanism: Dynamic Dispatch

When a function is marked , the compiler generates a hidden table for that class called the vtable
(virtual table). This table holds pointers to the correct function implementations.

When a virtual function is called through a base-class pointer (), the C++
runtime performs dynamic dispatch: it looks up the function pointer in the object's vtable to determine
which derived version to execute.

class Animal {
public:
// This enables run-time polymorphism
virtual void make_sound() const {
std::cout << "Animal generic sound\n";
}
// Non-virtual methods are statically dispatched
void eat() const {
std::cout << "Animal is eating\n";

}s

class Dog : public Animal {
public:
// Automatically virtual if base is virtual (but use 'override'!)
void make sound() const override {
std::cout << "Woof!\n";

7122

part4.md 2025-10-03

}s

void test_polymorphism() {
Animal* a = new Dog(); // Base pointer to Derived object

a->make_sound(); // Output: Woof! (Dynamic Dispatch)

a->eat(); // Output: Animal is eating (Static Dispatch on Base::eat)
delete a;
}
If were not virtual, would incorrectly output "Animal generic sound"
because the call would be resolved statically based on the pointer type ().

11.3 Abstract Base Classes and Pure Virtual Functions (Interfaces)

C++ uses Pure Virtual Functions to create Abstract Base Classes (ABCs), serving a role similar to C#'s
classes and S.

A pure virtual function is declared by initializing it to zero in the class declaration:

// Pure Virtual Function
virtual ReturnType function_name(Args) = 0;

Abstract Base Class (ABC)
A class containing at least one pure virtual function is considered an Abstract Base Class.

* You cannot create instances of an ABC. They can only be used as base classes for inheritance.
* Any derived class must provide an implementation for all inherited pure virtual functions or it, too, will
be an ABC

class ILogger { // Conventionally prefixed with 'I' for interface

public:
// Pure virtual function: forces derived classes to implement logging.
virtual void log(const std::string& message) = 0;

// ABCs often have a virtual destructor (see 11.5)
virtual ~ILogger() = default;

}s

class ConsolelLogger : public ILogger {
public:
// Must implement log() to be concrete
void log(const std::string& message) override {
std::cout << "[LOG] " << message << "\n";

i
8/22

part4.md 2025-10-03

11.4 The and Specifiers
Modern C++ (C++11 and later) introduced specifiers to improve the safety and control of inheritance
hierarchies.
(Safety)
The specifier is placed after the parameter list of a derived class function. It tells the compiler: "This

function must override a virtual function in the base class."

¢ Benefit: Prevents subtle bugs caused by typos in the function name or parameter list, which would
otherwise result in an overloaded (new) function instead of an overriding one.

¢ Best Practice: Always use when attempting to override a base virtual function.

class Child : public Parent {

public:
// Correct and safe: compiler checks Base for matching virtual function
void some_method() override { /* ... */ }

// If Parent::some_method had a different signature, this would be a compile-
time error.

// Without 'override', it would silently create a new, non-virtual function.

}s

(Restriction)

The specifier prevents a class from being inherited further or a virtual function from being overridden
further.

// Prevents any class from inheriting from FinalClass
class FinalClass final { /* ... */ };

class BaseController {

public:
// Prevents derived classes from overriding this specific method
virtual void initialize() final { /* ... */ }
s
This is the equivalent of C#'s keyword.

11.5 Virtual Destructors and Deleting Polymorphic Objects
This is one of the most important rules for memory safety in C++ polymorphism:

If a class has any virtual functions, it MUST have a virtual destructor.

9/22

part4.md 2025-10-03

The Danger of Non-Virtual Destruction

If you delete a derived class object through a base-class pointer or reference, and the base class destructor is
non-virtual, the C++ runtime uses static dispatch. It only calls the destructor for the base class part of the
object.

class ResourceUser {
public:
~ResourceUser() {
std::cout << "Base Destructor called\n";

}
}s
class HeavyResourceUser : public ResourceUser {
private:
int* large_buffer = new int[100]; // Resource acquired
public:

// PROBLEM: Base class destructor is NOT virtual
~HeavyResourceUser() {
std::cout << "Derived Destructor called\n";
delete[] large_buffer;

}s

void unsafe_deletion() {

ResourceUser* p = new HeavyResourceUser();

delete p; // Calls ONLY the Base Destructor, leaking the large_buffer!
(Undefined Behavior)

}

The Solution: Virtual Destructor

By making the base class destructor , the operator uses dynamic dispatch to correctly call
the most derived destructor first, followed by all base destructors.

class ResourceUser {
public:
// Solution: virtual destructor guarantees correct destruction
virtual ~ResourceUser() {
std::cout << "Base Destructor called\n";

}s

// ... other code remains the same ...
void safe_deletion() {

ResourceUser* p = new HeavyResourceUser();
delete p; // Now correctly calls Derived, then Base Destructor.

10/22

part4.md 2025-10-03

Best Practice: If you have a class intended to be a base class, or if it has any virtual functions, make its

destructor

11.6 Virtual Inheritance (The Diamond Problem Solution)

C++ supports Multiple Inheritance (inheriting from more than one base class), which introduces the

Diamond Problem.
The Diamond Problem occurs when:

1. Class B and class C both inherit from a common base
2. Class D inherits from both B and

The resulting object D will contain two separate sub-objects of class /2 (one inherited via & and one via (),
leading to ambiguity when accessing /'s members.

The Solution: Virtual Inheritance

To ensure the common base class A is represented only once in the final derived class D, the intermediate

classes (2 and C) must inherit using the keyword:

class A { };

class B : virtual public A { };

class C : virtual public A { I8

class D : public B, public C { 18
By using , You instruct the compiler to arrange the memory layout of D such that the
sub-object is shared and exists only once. This is a complex topic usually reserved for highly specialized
designs.
Key Takeaways

* Inheritance Modes: inheritance is the standard "is-a" relationship. and

restrict the access of base members within the derived class.

¢ Explicit Polymorphism: C++ requires the keyword on the base class method to enable run-
time polymorphism (dynamic dispatch via the vtable).

* Abstract Classes: Declare a function as pure virtual (= ©) to make a class an Abstract Base Class,
which cannot be instantiated and enforces implementation in derived classes.

e Safety Specifiers: Use to ensure you are correctly overriding a base method, and to
prevent further overriding or inheritance.

¢ Virtual Destructors are Mandatory: If a base class has any virtual functions, it MUST have a virtual
destructor to guarantee the correct deletion of derived objects via base pointers and prevent memory
leaks.

11/22

part4.md 2025-10-03

¢ Virtual Inheritance: Use inheritance to solve the Diamond Problem in multiple inheritance

by ensuring the common base class sub-object is included only once.

Exercises

1. Polymorphic Failure: Create a base class with a non-virtual method. Create a derived

class that overrides

© Task: Call using a pointer pointing to a object. Observe that the
method is called. Explain why this demonstrates static dispatch.
© Hint: Add the keyword to and observe the correct behavior.

2. The Safety Net: Take the code from Exercise 1 and make virtual. Now, in

, intentionally misspell the method name to (capital D).

© Task: Add the specifier to . Observe the compile-time error. Remove
and observe the compiler silently creates a new, non-virtual method. Explain why
saved you from a difficult-to-find run-time bug.

© Hint: Without , the compiler thinks you're just defining a new function for

3. Virtual Destructor Leaks: Write the unsafe deletion example from Section 11.5 (using
and without a virtual destructor).

© Task: Run the code and observe the output (only the base destructor called). Explain where the

memory leak occurs and how adding to fixes the leak.
© Hint: The derived class's destructor, which holds the logic, is skipped.
4. Implementing an Interface (ABC): Define an abstract base class with a pure virtual
function
o Task: Create a concrete class that publicly inherits from and implements the
method using the keyword. Show that you cannot instantiate

o Hint: An Abstract Base Class cannot be initialized; it must be derived from.

12. Type Conversions and Explicit Constructors

Type conversion is the process of changing a value from one type to another. In C#, you primarily deal with
explicit casts for user-defined types. In C++, however, the compiler is aggressive about performing implicit
conversions—a feature that is both highly convenient and a significant source of subtle bugs. Modern C++

dictates strict control over these automatic conversions using the keyword.

12.1 Implicit Type Conversions (Promotion and Conversion)

C++ performs implicit conversions in many contexts: function calls, assignments, and initializations. These

conversions fall into two main categories:

1. Standard Conversions (Built-in Types)

These are compiler-defined rules for primitive types:

12/22

part4.md 2025-10-03

* Promotion: Converting a smaller type to a larger type (e.g., to). This is usually safe and
non-lossy

* Conversion: Converting types where data loss may occur (e.g., to or signed to unsigned).

double d = 5 // Implicit promotion: 10 (int) -> 10.0 (double)

int i = ; // Implicit conversion: 5.7 (double) -> 5 (int) - Data loss!

2. User-Defined Conversions (Classes)

The compiler can use your class's constructors and operators to create a conversion chain. Two mechanisms
enable implicit conversion for user-defined types:

* Single-Argument Constructors: A constructor that can be called with a single argument of another
type implicitly tells the compiler, "I know how to turn a T into a MyClass."

¢ Conversion Operators: A special member function that tells the compiler, "l know how to turn a
MyClass into a T."

12.2 User-Defined Conversion Operators

A conversion operator allows an instance of your class to be implicitly converted to another type (like an
, , or another class). The syntax is unique: it has no return type and the name is the target type
preceded by the keyword.

class Fraction {

private:
int numerator_ = 0;
int denominator_ = 1;

public:
Fraction(int num, int den) : numerator_(num), denominator_(den) {}

// User-defined implicit conversion operator: Fraction -> double

operator double() const {
// This allows any Fraction object to be used where a double is expected.
return static_cast<double>(numerator_) / denominator_;

¥
s
void print_value(double {
N << "Value: " << val << "\n";
¥

int main() {
Fraction f{3, 4};

// Implicit conversion is used here: ¥ (Fraction) -> 0.75 (double)
print_value(f); // Output: Value: 0.75

13/22

part4.md 2025-10-03

return 0;

While concise, this automatic, silent conversion can lead to unexpected behavior when complex logic is
involved, as the compiler may choose a conversion path you did not intend.

12.3 Preventing Conversions with the Keyword

The greatest source of ambiguity and bugs in C++ is often an unwanted implicit conversion. The solution is
the keyword.

The general rule in Modern C++ is:

Always mark single-argument constructors and conversion operators as unless you
have a strong, specific reason for an implicit conversion.

1. Constructors

When applied to a constructor, prevents it from being used for implicit conversions. This forces the
programmer to use direct initialization or an explicit cast.

class Id {

public:
// This constructor IS a conversion from int to Id.
explicit Id(int {/* ... ¥/ }

s

void process_id(const {/* ... ¥/}

int main {
// 1. Direct Initialization (OK with or without explicit)
Id a{ };

// 2. Implicit Conversion (ERROR because constructor is explicit)
// Id b = 200;

// 3. Implicit conversion in function call (ERROR)
// process id(300);

// 4. Explicit cast required (OK)
process_id(static cast<Id>());

return 0;

By making the constructor , you ensure the is only converted to 1d when the programmer
consciously decides to do so.

2. Conversion Operators

14 /22

part4.md 2025-10-03

When applied to a conversion operator, prevents the conversion from happening implicitly (unless
it is a conversion to , which is a common exception).

class Fraction {
public:
// ... constructor ..
// Conversion is now EXPLICIT.
explicit operator double() const {
/] ...
¥
void print _value(double val) { /* ... */ }

int main() {
Fraction f{1, 2};

// print_value(f); // ERROR: Cannot convert Fraction to double implicitly.

// Explicit cast is now required
print_value(static_ cast<double>(f)); // OK

return 0;

12.4 Uniform Initialization and

C++ introduced a single, consistent syntax for initialization: uniform initialization, which uses braces ({ }).

int x {5}; // Initializes x to 5
std::vector<int> v {1, 2, 3}; // Initializes vector with elements 1, 2, 3

Initialization Rules

The keyword and uniform initialization interact predictably:
1. Uniform Initialization is Safer: The brace syntax () does not allow the compiler to use an
constructor for implicit conversions, whereas parenthesis initialization () does in some

cases. This makes brace initialization inherently safer.

class T { explicit T(int) {} };

T t1 {5}; // OK: Direct initialization

// T t2 = {5}; // ERROR: Copy initialization not allowed because T(int) is
explicit

15/22

part4.md 2025-10-03

2. Precedence: The compiler always prefers a constructor that takes a
over a regular constructor when using the brace syntax.

is a temporary, lightweight object that acts as a view into a list of elements. It is
the core mechanism used by all standard containers to initialize collections.

class VectorWrapper {

public:
// This constructor takes precedence over all others when using {}

VectorWrapper(S <int>) {
M << "Using initializer_list constructor for

" n

. << .size() <«
elements.\n";

}

// Regular single-argument constructor
VectorWrapper(int size) {
<< "Using regular int constructor for size

n

<< size << ".\n";

}
¥
int main {

VectorWrapper wl{10}; // Output: Using initializer_list constructor (list
size 1)

VectorWrapper w2 5 // Output: Using regular int constructor

(parenthesis call)
VectorWrapper w3{10, }; // Output: Using initializer_list constructor (list
size 2)

return 0;

If you intend a single-argument constructor to be called when using braces (like w2 above), you must ensure
your class does not define an constructor that could match.

Key Takeaways

¢ Implicit Conversions are Aggressive: C++ will use single-argument constructors and conversion
operators implicitly unless told otherwise, often leading to surprising behavior.

* Conversion Operators: Use to define rules for automatically converting
your class into another type.

* The Rule: Always mark single-argument constructors and user-defined conversion
operators as to prevent unintended implicit conversions. This is a core tenet of modern C++
safety.

¢ Uniform Initialization: Use brace initialization ({ }) as the standard, safer way to initialize objects, as it
restricts implicit conversions more aggressively than parenthesis initialization (()).

16/22

part4.md 2025-10-03

. Precedence: The compiler will always prefer a constructor taking a
over any other constructor when braces are used.

Exercises

1. Implicit Conversion Failure: Create a class with a non- constructor
. Create a function that takes a by reference.

© Task: Call . Explain how the compiler automatically converted the integer into a
object, which is dangerous. Now, add to the constructor and observe the

compile-time error.
© Hint: The constructor becomes a hidden conversion path.

2. Explicit Conversion Operator: Create a class that stores the temperature in Celsius. Add
an that converts the temperature to Fahrenheit.

© Task: Try to assign a objectto a variable without a cast. Then, use
to perform the conversion. Explain why the keyword is

necessary here.
© Hint: The conversion should only happen when the programmer consciously requests it.

3. Ambiguity with : Create a simple class with two constructors:

and

© Task: Initialize an object using . Which constructor is called? Change the first

constructor to and try again.
© Hint: The constructor takes precedence for brace initialization, even if

the list size is one.

4. Uniform Initialization Safety: Define a class with two integer members. Define a constructor

© Task: Initialize a point using parenthesis: . Then initialize another using
braces: . Explain why the first compiles (allowing implicit
conversion/truncation of the doubles to int), but the second may fail (because brace initialization
disallows narrowing conversions).

© Hint: Brace initialization provides stronger type checking and prevents narrowing conversions by

default.

13. Casting Operators and RTTI

While implicit conversions (Chapter 12) are generally discouraged, explicit conversions (or casting) are
sometimes necessary to safely convert between types or navigate complex inheritance hierarchies. C++
provides four specialized casting operators that clearly define the programmer's intent, replacing the

ambiguous and dangerous C-style cast.

13.1 C-Style Casts: Why They Are Dangerous
A C-style cast uses parenthesis syntax:

17122

part4.md 2025-10-03

double value = ;
int i = (int)value;

The danger of the C-style cast is its lack of specificity. It instructs the compiler to perform the necessary cast,
which could be any of the specialized C++ casts (, , or), often
trying the most aggressive cast until one succeeds.

. Specialized Cast Risk
C-Style Cast Potential] Intent
Equivalent Level
Simple conversion o
Safe, verifiable. Low
(to int)
Removing High-risk, violates object safety. High
Raw memory Extremely high-risk, low-level bits .
. . . . Maximum
reinterpretation manipulation.

Because the compiler hides the true nature of the cast, C-style casts make code brittle and difficult to search
for high-risk operations. The use of C-style casts should be avoided in Modern C++ code.

13.2 : Compile-Time Conversions

is the C++ standard way to perform conversions that are logically safe and reversible, and
which the compiler can check at compile time. It is the replacement for most of your C-style cast usage.

Primary Use Cases

1. Standard Numerical Conversions: to , to , etc.
2. Explicit Conversions: Using a constructor or conversion operator that was marked (Chapter
12.3).

3. Upcasting: Converting a derived class pointer/reference to its public base class pointer/reference (this
is always safe).

4. Safe Downcasting (Non-Polymorphic): Converting a base pointer/reference to a derived
pointer/reference, but only when the programmer is certain of the underlying type. If the type is
wrong, this results in Undefined Behavior (UB).

class Base {};

class Derived : public Base {};

void demonstrate_static() {
double d = ;

int i = static_cast<int>(d);

Derived d_obj;

181722

part4.md 2025-10-03

Base* b_ptr = &d_obj;

// 3. Downcasting (Unsafe if type is unknown/non-polymorphic)
Derived* d_ptr = static_cast<Derived*>(b_ptr);

}
is typically the fastest cast, as it involves no run-time checking.
13.3 : Run-Time Polymorphic Checking
is the tool for performing safe downcasting (Base \to Derived) and cross-casting in
complex inheritance hierarchies. Unlike , performs a safety check at run time.

Requirement: Polymorphism

can only be used on classes that are polymorphic (i.e., the class must have at least one virtual
function, Chapter 11.2). The presence of a vtable is what enables the run-time type check (RTTI).

Failure Modes

When the run-time check finds that the pointer/reference does not actually point to the target type, the
failure mode depends on whether a pointer or a reference is being cast:

Casting Type Failure Result C# Analogy
Pointer (7%) Returns . The operator.
Reference (72) Throws an exception: . Adirect, throwing cast.

class IlLoggable { public: virtual ~IlLoggable() = default; }; // Polymorphic base
class LoggerA : public IlLoggable {};
class LoggerB : public IlLoggable {};

void process_logger {
// Attempt safe downcasting via pointer
LoggerA* ptr_a = dynamic_cast<LoggerA*>(base ptr);

if (ptr_a) {
// Successful cast: use LoggerA methods

M << "Successfully cast to LoggerA.\n";

} else {

// Failed cast: the pointer was pointing to a LoggerB object, not a
LoggerA
<< "Cast failed, pointer is nullptr.\n";
}
}
Best Practice: Prefer the pointer form of and check for , @s exceptions are expensive.
13.4 and : High-Risk Operations

19/22

part4.md 2025-10-03

These two casts are specialized, rarely used, and often signal a design flaw or dangerously low-level
manipulation.

is the only C++ cast that can add or remove the or qualifiers from an object or
pointer.

* Primary Use Case: Interfacing with a legacy C library or API that was not properly -correct (i.e.,
takes a but doesn't actually modify the data).

¢ Safety Rule: You can only safely remove from an object that was not originally declared
If you remove and attempt to modify an object that was truly declared , the result is
Undefined Behavior.

void legacy_c_func(char ;
void caller(const char {

legacy c_func(const_cast<char*>(data));

is the most dangerous cast. It performs a direct, bitwise reinterpretation of the underlying
binary pattern, typically converting one pointer type to a completely unrelated pointer type, or a pointer to an
integer.

* High Risk: It provides no safety check and often violates alignment and type rules. It is non-portable.

* Primary Use Case: Low-level, system-specific code like memory mapping, driver development, or
specific network serialization when working with raw memory buffers.

int i = 5

char* c_ptr = reinterpret cast<char*>(&i);

NEVER use unless you are absolutely certain of the memory layout and context.

13.5 Run-Time Type Information (RTTI) and

Run-Time Type Information (RTTI) is the C++ mechanism that allows a program to discover the actual type

of an object during execution. It is the underlying facility that makes possible.
The Operator
The operator is the simplest way to access RTTI. It returns a reference to a object,

which holds information about the type.

20/22

part4.md 2025-10-03

* Syntax: or
* Primary Use: Comparing the run-time type of an object to a known type.

class Base {};
class Derived : public Base {};

void check_type {
if (typeid(*b _ptr) == typeid(Derived)) {
M << "The object is actually a Derived type.\n";
} else if (typeid(*b_ptr) == typeid(Base)) {
<< "The object is a Base type.\n";

Note on Polymorphism: When applied to a pointer or reference to a polymorphic type (Base class has a
virtual function), correctly returns the run-time type of the object pointed to. If applied to a non-
polymorphic type, it returns the static (declared) type of the expression.

Trade-offs: RTTl is typically enabled by default, but some development environments (especially embedded
or high-performance game engines) disable it to save memory space and reduce the minimal overhead of

dynamic dispatch and type information storage. If RTTI is disabled, and cannot be
used.
Key Takeaways
* Avoid C-Style Casts: The C-style cast () is ambiguous and dangerous. Always use the named,
specific C++ casting operators.
. is the Default: Use for safe, verifiable, compile-time conversions (numeric,
explicit constructors, upcasting).
. is for Polymorphism: Use for safe downcasting in class hierarchies that
have at least one virtual function. Use the pointer form and check for on failure.
* High-Risk Operations: is only for removing (usually for legacy APIs).

is for low-level, bitwise reinterpretation and should be avoided.
e RTTI and : RTTI (Run-Time Type Information) enables . The operator
allows you to query the run-time type of a polymorphic object for comparison.

Exercises

1. C-Style Cast Ambiguity: Write a function that takes a pointer. In , call this function
with a literal string

© Task: Use a C-style cast to pass the string literal into the function. Explain which of the four C++
casts the C-style cast is implicitly using. Now, replace the C-style cast with the correct specialized
C++ cast.

21/22

part4.md 2025-10-03

© Hint: String literals are , SO they decay to . The C-style cast must
remove
2. Safe Polymorphic Downcasting: Create a base class with a virtual destructor. Create a
derived class . Create a that points to a object.
© Task: Use to safely cast the to a . Check the result for
. Then, try to cast to a non-existent type to demonstrate the

failure mode.
© Hint: The ensures the safety that cannot provide at runtime.

3. Static vs. Dynamic Downcasting: Take the code from Exercise 2. This time, create a non-polymorphic
base class (no virtual functions). Attempt to use on a pointer of this type.

© Task: Observe the compile-time error. Explain why fails to compile for non-
polymorphic types, and what mechanism is missing.

© Hint: relies on RTTI, which requires a vtable, which is only generated when a class
is polymorphic.

4. RTTI and Type Comparison: Using the and classes (which must be
polymorphic), write a function that takes a

© Task: Inside the function, use to check if the run-time type of the object is exactly
. Print the result of
o Hint: You must dereference the pointer () for to perform a run-time check on the
object's actual type.

Where to go Next

* Part I:: The C++ Ecosystem and Foundation: This section establishes the philosophical and technical
underpinnings of C++, focusing on compilation, linking, and the modern modularization system.

¢ Part lI: Core Constructs, Classes, and Basic 1/0: Here, we cover the essential C++ syntax, focusing on
differences in data types, scoping, correctness, and the function of lvalue references.

¢ Part lll: The C++ Memory Model and Resource Management: The most critical section, which
deeply explores raw pointers, value categories, move semantics, and the indispensable role of smart
pointers and the **RAII** idiom.

* Part IV: Classical OOP, Safety, and Type Manipulation: This part addresses familiar object-oriented
concepts like inheritance and polymorphism, emphasizing C++'s rules for **exception safety** and
type-safe casting.

* Part V: Genericity, Modern Idioms, and The Standard Library: Finally, we explore the advanced
capabilities of templates, C++20 Concepts, lambda expressions, and the power of the Standard
Library containers and **Ranges** for highly generic and expressive code.

* Appendix: Supplementary materials including coding style guidelines, compiler flags, and further
reading.

22122

file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part1.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part2.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part3.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part4.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/part5.md
file:///c%3A/Users/smoli/WWW/couleslaw.github.io/other/ai-gen/cpp-guide/appendix.md

