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Part V: Genericity, Modern Idioms, and The Standard
Library

This part delves into the most modern and powerful features of C++. Chapters 14 through 19 introduce
advanced language constructs such as lambda expressions, structured bindings, and compile-time
programming with . You will learn the fundamentals of generic programming with templates and
concepts, and how algebraic data types like , , and can improve
code robustness and error handling. The section also covers the rich ecosystem of standard containers and
iterators, explores the extensive algorithms library and the new Ranges framework introduced in C++20, and
provides a practical introduction to concurrency using threads, synchronization primitives, and asynchronous
programming tools. Together, these chapters equip you to write expressive, efficient, and safe modern C++
code.
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14. Modern Language Constructs and Idioms

Modern C++ development relies heavily on several features introduced in C++11 and later (C++14, C++17,
C++20). These features dramatically improve expressiveness, reduce boilerplate, and push computation from
runtime into the compile-time phase, leading to highly optimized binaries.

14.1 Lambda Expressions (Basic Syntax and Captures)

Lambda expressions are inline, anonymous functions, similar to those found in C#. They are commonly used
as function objects (functors) with the Standard Algorithms Library (Chapter 18) and for defining local
behavior.

The core syntax is composed of three parts: capture clause, parameter list, and body.

[capture_clause](parameters) -> return_type {

}

The Capture Clause (| )

The capture clause is the most unique and critical part of C++ lambdas, defining how the lambda accesses
variables from the enclosing scope. Unlike C# closures, C++ requires explicit specification of every external
variable used, controlling the variable's lifetime and mutability.

Capture . o .
Mechanism Lifetime/Mutability Analogy

Syntax
Capture by A private, immutable copy of x is made inside Read-only copy of a local
Value the lambda object upon creation. variable.
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Capture . - -
Mechanism Lifetime/Mutability Analogy
Syntax
The lambda holds a reference to the original Standard C# closure
Capture by , . . s
variable x. The variable is mutable within the capture (be careful of
Reference .
lambda. lifetime).
Implicit
Capture by Captures all used variables by value. Avoided in large scopes.
Value
Implicit Dangerous; highly
Capture by Captures all used variables by reference. discouraged due to
Reference lifetime issues.
Capture by Captures the pointer to the enclosing class

. . C# instance methods.
Pointer/Copy instance.

Example of Captures:

int x 5
int y 5

auto my_lambda = [x, &y]() {
<< "x (value): " << x << "\n";
y += 5
s

my_lambda();
<< "External y is now: " << y << "\n";

Lifetime Warning: The Danger of Reference Capture

Capturing a variable by reference ( or [ &]) poses a severe risk if the lambda object outlives the captured
variable.

If the lambda is stored or returned and later executed, and the local variable x has already gone out of scope
(its memory is invalid), the lambda will access a dangling reference leading to Undefined Behavior. This is a
major concern in C++ that C# developers rarely encounter due to garbage collection extending the lifetime of
captured variables.

14.2 Lambda Return Types, Generic Lambdas, and Lambdas

Return Types
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If a lambda body consists of a single statement, the return type is automatically deduced (similar to
C#). Otherwise, you must use a trailing return type ( ):

// Deduced return type: int
auto single_stmt = [] (int a) { return a * 2; };

// Trailing return type: required for complex bodies
auto multi_stmt = [] (int a) -> int {

if (a < 9) { return 0; }

return a * 2;

}s

Generic Lambdas (C++14)

Generic lambdas allow you to use the keyword in the parameter list. This effectively makes the lambda a
template where the compiler deduces the types of the parameters when the lambda is called.

// The compiler treats 'T' as a template type parameter for the call operator
auto generic_adder = [](auto a, auto b) {
return a + b;

}s

int i = generic_adder(5, ); // T is int
double d = generic_adder( g ); // T is double

Generic lambdas greatly simplify writing functional code that works with any compatible type, eliminating the
need for complex template syntax in many cases.

Lambdas (C++17/20)

Since C++17, lambdas can be marked , allowing their evaluation to potentially happen entirely at
compile time (Section 14.4). This is a powerful optimization, especially when the lambda is used in the
initialization of a variable.

14.3 Structured Bindings and Deconstruction (C++17)

Structured Bindings provide a concise syntax for unpacking the elements of an aggregate object (like a
tuple, pair, array, or struct) into named variables. This is conceptually similar to C#'s deconstruction of tuples.

The syntax uses followed by a list of names enclosed in square brackets:

Unpacking and

Structured bindings are most frequently used to handle return values from standard containers, such as
iterating over a map's key-value pairs or handling the result of an insertion operation (

).
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#include <map>
#include <string>

std::map<int, std::string> users = {
{1, "Alice"}, {2, "Bob"}
¥

// Cleanly unpacks the key and value from the map's std::pair
for (const auto& [id, name] : users) {
std::cout << "User "

<< id <« is << name << "\n";

// Example: Unpacking a return pair from std::map::insert
auto result = users.insert({3, "Charlie"});

// result is a std::pair<std::map<...>::iterator, bool>
// iterator_pos gets the iterator, was_inserted gets the bool status
const auto& [iterator_pos, was_inserted] = result;

if (was_inserted) {
std::cout << "Inserted new user:

<< iterator_pos->second << "\n";

14.4 Compile-Time Programming with

The keyword is a cornerstone of performance optimization in Modern C++. It stands for
"constant expression” and is a request to the compiler to evaluate the expression, variable, or function at
compile time

Variables

When applied to a variable, requires that the variable be initialized by a value known during
compilation.

// 1. const means read-only at runtime
const int run_time_val = get_value(); // Calculated at runtime

// 2. constexpr means evaluated at compile time
constexpr int compile_time_val = 10 + 20; // Replaced by 30 in the code

// 3. constexpr implies const
constexpr int answer = 42;
// answer is immutable (const), and its value is known at compile time.

Functions

When applied to a function, means the function can be evaluated at compile time if all its
arguments are also compile-time constants. If the arguments are not constant, the function degrades
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gracefully and is evaluated at run time.

// Function that can run at compile time
constexpr int power(int int {

// Only simple, non-side-effecting logic is allowed in constexpr functions
(rules relaxed in C++14/17)

int res = 1;
for (int i = 0; i < ; ++i) |
res *= base;
return res;
int runtime_input = 2;

// Evaluated at compile time; compiler substitutes '1024°'
constexpr int resultl = power(2, )

// Evaluated at run time because the argument is not constant
int result2 = power(runtime input, 5);

The goal of is zero-overhead abstraction: you write readable, type-safe functions, but the
performance cost is zero because the calculation is finished before the user ever runs the program.

14.5 and Template Compilation Decisions

The conditional statement (C++17) is used exclusively inside templates or generic lambdas to
make decisions about code compilation at compile time.

The Problem with Runtime i+ in Templates

In generic C++ code (templates), a standard i statement evaluates at runtime, but the compiler must still
compile both branches of the if. If one branch contains code that is syntactically invalid for a specific
template type, the entire compilation fails, even if that branch would never be executed at runtime.

The Solution:

forces the condition to be evaluated at compile time. Critically, if the condition is false, the
compiler discards the false branch entirely before compilation and type checking.

template <typename T>
void print_value(const {
// If T is a pointer type...
if constexpr {
// This branch is only compiled if T is actually a pointer.
- << "Pointer value: " << *value << "\n";
} else {
// This branch is only compiled if T is NOT a pointer.

<< "Direct value: " << value << "\n";
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is essential for writing robust, efficient generic functions that need to choose entirely different
implementation strategies based on the characteristics of the types they operate on (a form of tag dispatch).

Key Takeaways

¢ Lambda Capture is Explicit: C++ lambdas require explicit capture (| ]). Use capture by value (| x |) for
safety unless you explicitly need mutation and are certain of the object's lifetime. Avoid implicit
reference capture ([ &1).

* Generic Lambdas: Use in the parameter list ( ) to create simple, inline templates
without complex syntax.

® Structured Bindings: Use to cleanly deconstruct tuples, pairs, and struct
members, improving code readability, especially when iterating over maps.

. for Performance: The keyword requests compile-time evaluation, shifting
computation from runtime to build time for zero-overhead performance gains. It implies

. for Generics: Use inside templates to make compile-time decisions,
discarding entire branches of code that are inappropriate for a specific type, thereby solving template

compilation issues.

Exercises
1. Capture and Lifetime: Write a function that creates an on the stack and then returns a lambda
that captures the by reference ([ & 1). In , call the function and immediately execute the

returned lambda.

o Task: Observe the runtime error or garbage output. Explain why this demonstrates the core
danger of reference capture in C++.

© Hint: The goes out of scope when the function returns, leaving the lambda with a dangling
reference.
2. Generic Lambda vs. Function: Write a single generic lambda function using that accepts one

argument and returns the square of that argument.

o Task: Call the lambda with an and a to verify it works for both types without
requiring explicit template syntax.
© Hint: The keyword in the parameter list creates a function call operator template within the

lambda's closure type.
3. Structured Binding with Map: Create a of employee names and IDs.

© Task: Use a structured binding in a loop ( )
to print the contents of the map.
© Hint: The element of the map is a
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4, VS. : Write two functions: one and one

© Task: Initialize two variables:
and . Then, try to initialize a third:
where
is read from user input. Explain why the last initialization fails and why the
middle one works.
© Hint: is a contract; it fails compilation if the inputs aren't constants. only
guarantees immutability at runtime.

5. Utility: Write a generic function template that uses
to check if T is a standard container (e.g., using

)-

o Task: If it is a container, print . If it is not, print "Not a container." Demonstrate that
the compiler correctly handles calling only when appropriate.

o Hint: If you tried this with a regular i f, the code would fail to compile for a type T that doesn't
have a member.

15. Introduction to Templates and Concepts

Templates are the foundation of C++'s generic programming paradigm, serving the same role as generics in
C# but operating entirely at compile time. C++ templates are often described as compile-time code
generation: the compiler effectively writes and compiles a new version of the function or class for every
unique set of types used.

Since C++20, Concepts provide a powerful, necessary way to define and enforce the requirements that
template arguments must meet, finally solving a long-standing problem of cryptic template error messages.

15.1 Function Templates and Template Argument Deduction
A Function Template defines a family of functions where the type of one or more arguments is left generic.

Syntax and Argument Deduction

Function templates begin with (or )- The keyword
is simply a convention here, indicating that T is a type parameter.

template <typename T>
T add {
return a + b;

int main {
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int i = add(5, 190);

// The compiler automatically deduces T is 'double'’
double d = add(5.5, 1.2);

// ERROR: T cannot be deduced to both int and double
// auto mixed = add(5, 1.2);

// Explicitly specify the template argument (forces conversion)
auto explicit d = add<double>(5, 1.2); // T is double; 5 is converted to 5.0

return 0;

Template Argument Deduction is a powerful feature: the compiler examines the arguments passed to the
function and automatically figures out what the template parameter T should be.

15.2 Class Templates and Template Parameters

Class Templates define generic classes (like or )-

Type Parameters

Type parameters are declared using or

template <typename T>
class MyContainer {
private:
T value_;
public:
MyContainer(T val) : value_(val) {}
T get() const { return value_; }
}s
int main() {
// Explicitly specify the template argument T

MyContainer<int> int_c(42);

// C++17 Class Template Argument Deduction (CTAD) allows this simpler syntax
// MyContainer c2(3.14); // Compiler deduces T is double

return 0;

Non-Type Template Parameters

Templates can also be parameterized by non-type parameters, which must be compile-time constants (e.g.,
integers, booleans, pointers, or Ivalue references). This is commonly used to specify the size of a container, as
with
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// N is a non-type template parameter (an integer size)
template <typename T, int N>
class StaticArray {
private:
T data_[N];
public:
int size() const { return N; }
Jl ooc
¥

// The size N must be provided explicitly as a compile-time constant
StaticArray<double, 10> buffer;

15.3 Template Specialization and Partial Specialization

Template specialization allows you to provide a custom implementation for a template when it is instantiated
with specific types. This is necessary when the generic algorithm is inefficient or incorrect for certain types.

Full Specialization

Full Specialization provides a complete, custom implementation for a specific template type (e.g., handling
the generic function specifically for ).

The syntax starts with an empty template list followed by the specialized type:

// Generic implementation (handles all types)
template <typename T> T max_val(T a, T b) { return a > b ? a : b; }

// Full specialization for const char* (needs strcmp)

template <>

const char* max_val<const char*>(const char* a, const char* b) {
// The generic implementation would just compare the memory addresses!
return (std::strcmp(a, b) > 0) ? a : b;

Partial Specialization

Partial Specialization applies only to class templates (not function templates). It provides a custom
implementation for a subset of the template parameters or when the parameters meet certain conditions (e.g.,
specializing for pointers, but not a specific pointer type).

// Generic class template (primary template)
template <typename T, typename U>
class PairWrapper { /* generic implementation */ };

// Partial specialization: Custom implementation where the second type is a
pointer
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template <typename T, typename U>

class PairWrapper<T, U*> {
// Specialized implementation for when U is a pointer type (U*)
// e.g., to handle resource management for the pointer

};

15.4 Concepts (C++20): Constraining Template Parameters

Before C++20, if a template function was instantiated with a type that didn't meet its requirements (e.g.,
calling when T didn't have a method), the resulting compile error was verbose, obtuse,
and pointed deep inside the template code. This was known as SFINAE error messages (Substitution Failure
Is Not An Error).

Concepts solve this problem by providing a clear, compile-time contract. A Concept is a named boolean
expression that specifies the requirements (methods, operators, traits) a type must satisfy.

Defining a Concept

A concept is defined using the keyword:

#include <concepts>

// A concept defining that a type T must support the '<' operator
template <typename T>
concept LessThanComparable = requires (T a, T b) {

{ a<b} ->std::same_as<bool>; // Requires that 'a < b' is a valid

expression that returns bool

}s

// A concept combining existing requirements
template <typename T>
concept Sortable = std::default initializable<T> && LessThanComparable<T>;

Using Concepts (The Terse C++20 Syntax)

Concepts are used directly in the template parameter list, replacing the generic . This makes the
code much clearer.

// Instead of: template <typename T>

template <LessThanComparable T>

T min_val(T a, T b) {
// Compiler only accepts types T that satisfy the LessThanComparable concept
return a < b ? a : b;

// Terse syntax for concepts:
// template <std::integral T> // T must be an integral type (int, long, etc.)
// template <std::container T> // T must be a standard container
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If you call with a custom type that doesn't define , the compiler error is simple and clear:
"Error: Type X does not satisfy the LessThanComparable concept."

15.5 The Keyword and Requires Clauses

The keyword is the underlying mechanism used to check and specify type properties for concepts.
It can be used in two ways:

1. Simple Clause (For Concept Definition)

Used within a concept definition (as shown above) to check for a combination of syntax validity, return type,
and other conditions.

2. Constraints on Function Templates

A clause can be placed immediately after the function signature to specify the constraints directly,
without defining a separate, named concept. This is often used for complex, one-off constraints.

template <typename T>
void execute_callback

requires requires {

{ f(1, 2) } -> ::same_as<void>;
}
{

func(10, );

While powerful, the syntax is more verbose. In Modern C++, the preferred method is to define a clear, named
Concept (Section 15.4) and use the terse syntax.

Key Takeaways

¢ Templates are Compile-Time Generics: C++ templates are powerful tools for code generation,
creating specialized code for each unique type used.

¢ Argument Deduction: Function templates often allow the compiler to automatically deduce the type
parameters, simplifying the call site. Class templates typically require explicit type specification.

* Specialization for Exceptions: Use Full Specialization for function templates and Partial
Specialization for class templates to provide custom implementations when the generic solution is
inadequate for a specific type or class of types (e.g., all pointer types).

* Concepts are Contracts: Concepts (C++20) are compile-time predicates that clearly define the
required interface or properties of a type used in a template.

* Cleaner Errors: The primary benefit of Concepts is replacing confusing, verbose template errors with
clear, concise messages stating exactly which requirement the type failed to satisfy.

* Terse Syntax: The preferred C++20 way to use concepts is to substitute the concept name for

in the template parameter list (e.g., )-
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Exercises

1. Function Template Deduction: Write a function template that accepts

two different generic types, T and

o Task: Call the function with . Observe the return type deduction. Then, try to
enforce an explicit return type of using the trailing return syntax ( )-
© Hint: The return type of will default to
2. Class Template Specialization: Create a primary class template that prints the value of 7.
© Task: Create a full specialization that prints

before the value. Demonstrate that the specialized version is called when you instantiate
and the generic version is called for .
© Hint: The specialization must begin with and include the fully specified type in the

class name.
3. Concept Creation and Usage: Define a simple concept called that requires the type T to have a

public member function

o Task: Write a function template that takes a type constrained by and calls
. Test the function with a simple struct that implements and another struct

that does not.

© Hint: The concept definition should use the keyword, checking the validity of the
expression

4. Non-Type Template Parameter Utility: Write a class template that uses a non-type
template parameter | to statically allocate a as its internal storage.
© Task: Instantiate two buffers with different sizes: and

Show that the size of the buffer is determined at compile time.
© Hint: Nl must be used directly as the size argument in the internal array declaration.

16. Algebraic Data Types for Robustness

Algebraic Data Types (ADTs) are composite types used in functional programming to model data structure
boundaries and states explicitly. In C++, these are implemented via the standard library types
, ,and , introduced in C++17. These types dramatically improve

safety and code clarity by forcing the programmer to handle specific conditions (like "the absence of a value"

or "one of several possible types") at the compile stage.

16.1 : Handling the Absence of a Value

is a type that either holds a value of type T or holds no value (represented by the
placeholder ). It is the modern, type-safe replacement for using magic values (like $-1$) or raw
pointers/references that might be to signify "missing data."

Characteristics
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* Type Safety: It explicitly separates the "missing" state from the value state. Unlike a raw pointer, you
must explicitly check the optional before attempting to access the value.

® Zero Overhead (Usually): is typically implemented to require only one byte of extra
space (a boolean flag) beyond the storage required for type

Usage
::optional<int> safe division(int int {
if (b == 0) {
return ::nullopt; // Return "no value"
}

return a / b; // Return the calculated value

void process_result() {
auto result = safe division(10, 2);

// 1. Safe checking (similar to C#'s if (value.HasValue))
if (result) { // Implicit conversion to bool checks for presence
// 2. Accessing the value (requires check)
<< "Result is: " << result.value() << "\n";
} else {
<< "Division failed (no value).\n";
// Pesult value() here would throw std::bad_optional_access

// Modern C++: Get the value or provide a default (similar to C#'s ??
operator)
int final value = safe division(10, 9).value or(-1);
<< "Default value: " << final _value << "\n";

16.2 : Type-Safe Unions and

is a class template that safely holds a value of one type from a predefined set of
types at any given time. It is C++'s discriminated union—the compiler knows the finite set of types the
variant might hold, ensuring type safety.

Characteristics

* Fixed Types (Closed Set): The types in the template list ( ) are the only types it can ever
hold.
* Type-Safe: Unlike C-style unions, keeps track of which type it currently holds (its

"state"), preventing you from accessing the wrong type.
® Zero Overhead (Usually): No dynamic memory allocation is involved; memory is allocated on the stack
to fit the largest of the allowed types plus a small index to track the current type.
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Usage

#include <variant>
#include <string>
#include <iostream>

// The variant can hold an int, a double, or a std::string
using Data = std::variant<int, double, std::string>;

void handle_data() {
Data dl1 = 42; // Currently holds int
Data d2 = "hello"; // Currently holds std::string

// 1. Unsafe check (similar to pattern matching 'is' operator - prefer
std::visit)
if (std::holds_alternative<int>(d1)) {
// Safe access via std::get<Type>
std::cout << "Int value: " << std::get<int>(dl) << "\n";

// 2. Set dl1 to a different type
dl = 3.14159; // Now holds double
// std::cout << std::get<int>(dl); // Throws std::bad_variant_access!

The Safest Access:

The best way to operate on a is using . This function takes a visitor (usually a
lambda or functor) and the variant(s). The visitor must be callable with all possible types held by the variant,
ensuring you handle every state—a guarantee checked at compile time.

auto visitor = [](auto&& arg) {
using T = std::decay_t<decltype(arg)>; // Get the actual type T
if constexpr (std::is_same_v<T, int>) {
std::cout << "Variant holds int: " << arg * 2 << "\n";
} else if constexpr (std::is_same_v<T, double>) {
std::cout << "Variant holds double: " << arg / 2.0 << "\n";
} else {
std::cout << "Variant holds string (or unknown type).\n";

}s

Data d3 = 100;

std::visit(visitor, d3); // Calls the int branch

d3 = 50.0;

std::visit(visitor, d3); // Calls the double branch

16.3 : Type-Safe Polymorphic Value Container
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is designed to hold a value of any type that is copy-constructible. It is similar to C#'s type

but requires explicit casting for safety.

Characteristics

* Heterogeneous Types (Open Set): Unlike , the set of possible contained types is not
fixed at compile time.
* Run-time Overhead: usually allocates memory on the heap (unless the contained type is

very small) and stores type information (RTTI), incurring run-time cost.

Usage

To retrieve the value, you must use , which performs a run-time type check.

void handle_any() {

jiany a;
= 42;
= ("Hello World");
try {
s = ::any_cast< e >(a);
<< "Contained string: " << s << "\n";
} catch (const ::bad_any cast& e) {
. << "Cast failed: " << e.what() << "\n";
}
}
Best Practice: should be used sparingly, typically only when dealing with dynamic configuration,

reflection-like contexts, or parameter passing where the type cannot be known until runtime. Prefer
when the set of types is closed.

16.4 Using ADTs for Modern Error Handling (vs. Exceptions)

While exceptions are mandatory for catastrophic errors (Chapter 10), modern C++ (following functional
programming trends) prefers using ADTs for expected, recoverable errors.

This idiom is often implemented using a conceptual type, which is effectively a
where T is the expected success value and £ is an error type (like a simple error code or

message string).

The C++ Error-Handling ADT (The Idiom)

The standard library adopted this with in C++23, but the idiom is achievable with
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// Conceptual type for recoverable errors (Success or Failure)

using NetworkResult = ::variantc - , int /*Error Code*/>;
NetworkResult fetch _data(int {
if (id < 9) {
// Return an error (int)
return ;
}
// Return the success value (std::string)
return "Data for user " + ::to_string(id);
}

void process_network() {
auto result = fetch data(-1);

// Explicitly handle all outcomes using std::visit
::visit([](auto&& arg) {
using T = ::decay_t<decltype(arg)>;
if constexpr ( ::is_same_ v<T, i >) {
// Success branch
<< "Data received:

- << arg << "\n";
} else {

// Error branch (T is int)

- << "Network error code:

<< arg << "\n";

}
}, result);

This approach forces the caller to explicitly check and handle the error, leading to more robust code, avoiding
the non-local control flow and performance costs associated with exceptions.

Key Takeaways

. for Absence: Use to explicitly model the possibility of a missing
value, replacing ambiguous s or magic return values. Check presence with or use

. for Closed Sets: Use for type-safe unions where the set
of possible types is known and fixed at compile time. It is a powerful form of static polymorphism.

. is Safest: Access contents using with a lambda/functor that
handles every possible type, ensuring exhaustive handling.

. for Open Sets: Use only when the contained type is truly unknown at compile
time (like C#'s ), but be aware of the run-time overhead and the need for .

¢ ADTs for Error Handling: Modern C++ uses ADTs (like the idiom, often implemented
with ) to handle recoverable errors explicitly, returning them as a value rather than
relying on the non-local control flow of exceptions.

Exercises
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1. Optional Chain: Write a function that returns
Return a name for and otherwise.
© Task:In , call the function, check if the value exists, and if so, print the string in uppercase. If

not, print "User not found."
© Hint: Use to safely check and extract the

value in one line.

2. Variant State Management: Define a variant that can hold either a (path) or

an (file descriptor).

© Task: Instantiate the variant with a string, then change its value to an integer. Then, try to use
when it holds the integer and observe the

exception.
© Hint: You can use to attempt a safe, non-throwing check (returns
on failure).
3. Variant Exhaustive Visit: Write a single generic lambda function using logic inside it to
act as a visitor.
o Task: Use with this lambda on the variant from Exercise 2. The lambda
must handle the type (print length) and the type (print a status message).
© Hint: The generic lambda should take . Inside the body, use
4. Any Safety vs. Danger: Create an object, assign it a value.
© Task: Safely retrieve the value using . Then, try to retrieve the value
using and catch the resulting exception.
© Hint: The exception type is . The compiler cannot prevent the failure; it's a

necessary run-time check.

17. Standard Containers and Iterators

The Standard Template Library (STL) in C++ provides a comprehensive suite of container classes that
manage collections of objects. These containers, along with iterators and algorithms (Chapter 18), form the
backbone of generic C++ programming. Unlike C# where all collection types live in managed memory, C++

containers give you explicit control over memory layout and performance characteristics.

17.1 Contiguous Containers

These containers store elements in a single, block of memory, ensuring that elements are physically adjacent.
This is the fastest layout for traversing, cache locality, and interoperability with raw C-style arrays.

(The Workhorse)

is the dynamic array container, and it is the single most important and frequently used

container in C++. It is the C++ equivalent of C#'s
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Characteristic Description Comparison to C#
Contiguous Elements are guaranteed to be stored sequentially in Critical for performance and
Memory memory. passing data to C APIs.
Random Accessing any element is $O(1)$ time complexity . ,

. Same as array indexing ([ 1).
Access (constant time).

When the vector runs out of capacity, it allocates a This reallocation/copy is an

Resizing new, larger block of memory (usually double the size) $O(N)$ operation, which is why

and copies all old elements to the new location.

void demonstrate_vector() {

<int> numbers;

number‘s.r‘eser‘ve( )}

for (int i = 0; i <

; ++i) A

numbers.push_back(i * 10);

<< numbers[2] << "\n";

int* raw_ptr = numbers.data();

pre-reserving capacity is vital.

is a fixed-size container that wraps a raw C-style array. The size $N$ is a non-type

template parameter and must be known at compile time.

¢ Fixed Size: Cannot be resized at runtime.

e Stack Allocation: The memory is typically allocated on the stack (or inside the containing object),

offering zero allocation overhead.

* Performance: Optimal performance, often used instead of raw C-style arrays for type safety and

standard library integration.

17.2 Sequence Containers

Sequence containers manage a sequential ordering of elements but do not necessarily store them

contiguously. They are optimized for non-centralized insertions and deletions.

19/33



part5.md 2025-10-03

(Doubly Linked List)
is C++'s implementation of a doubly linked list (equivalent to C#'s ).

* Insertion/Deletion: $O(1)$ complexity for insertion and deletion anywhere in the list, provided you
already have an iterator to the position.

* Random Access: Slow $O(N)$ complexity to find an element by index because it must traverse the list.

* Memory: Elements are not contiguous; each node requires memory for the data plus pointers to the

next and previous elements.

(Double-Ended Queue)

(pronounced "deck") is a container that supports efficient insertion and deletion at both the
beginning and the end.

* Memory: Implemented as a collection of fixed-size blocks (segments), making it mostly contiguous but
not strictly so.

¢ Performance: Fast $O(1)$ for , , , and

* Random Access: Supports $O(1)$ random access, making it a good alternative to when
frequent insertions at the front are required.

17.3 Associative Containers (Ordered)

These containers store elements and order them according to a key (maps) or the element value itself (sets).
They are typically implemented using self-balancing binary search trees (Red-Black Trees).

) Complexity
Container C# Analogue Key Feature .
(Insertion/Lookup)

Stores (Key, Value) pairs,

sorted by Key. $0Qlog N)3
N/A Allows duplicate keys. $O(\log N)$
N/A Allows duplicate elements. $O(\log N)$

void demonstrate _map() {
N < - , int> ages;
ages["Bob"] = ;
ages.insert({"Alice", 1);

if (ages.count("Bob")) {
<< "Bob's age:

<< ages["Bob"] << "\n";
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for (const auto& [name, age] : ages) {

<< name << is << age << "\n";

}

The ordering guarantee is the defining characteristic of these containers.

17.4 Unordered Containers (Hash-Based)

These containers use hash tables for storage. They forgo the ordering guarantee in exchange for superior
performance. They are the direct equivalents of C#'s standard dictionary and set types.

. Complexity
Container C# Analogue Key Feature ]
(Insertion/Lookup)
Stores (Key, Value) pairs, $O(1)$ average, $O(N)$
based on hash. worst-case
Stores unique elements, $O(1)$ average, $O(N)$
based on hash. worst-case

* Performance: Lookup, insertion, and deletion are, on average, $O(1)$ (constant time). This makes them
the container of choice when fast lookups are paramount and element order is irrelevant.

* Requirements: The key type  or element type T must provide a hash function ( ) and an
equality comparison operator ( ).

17.5 Iterators: Concepts, Categories, and Range-based Operations

The STL is designed around the concept of the iterator, which acts as a generic pointer or handle that points
to an element within a container. Iterators provide a unified interface for all containers, allowing algorithms
to work seamlessly across vectors, lists, maps, etc. They are C++'s version of C#'s but with
much richer capabilities.

Iterator Categories

Iterators are classified by the minimum set of operations they support. This classification determines which
algorithms can be used with which containers.

Category Supported Operations Example Containers

Read once, advance only (*1t, . Reading from an input stream

). ( )-

Input Iterator

Forward Input Iterator + Can read/write multiple

Iterator times.

Bidirectional Forward Iterator + Can move backward

Iterator ( ). ' '
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Category Supported Operations Example Containers

Random Access Bidirectional Iterator + Pointer arithmetic
Iterator ( . )-

The random access category is the most powerful and fastest, enabling the use of highly optimized algorithms
like

The Range-Based Loop

The modern C++ range-based loop is the simplest way to iterate over any container. It internally uses
the container's and iterators.

<int> data = {1, 2, 3, 4};

for (int val : data) {

<< val <« g

<< ll\nll;

for (auto it = data.begin(); it != data.end(); ++it) {

<< Fit << " "
}
Constant Iterators
All containers provide both mutable iterators ( , ) and constant iterators ( , ).
Constant iterators are essential for methods that take a container reference, as they prevent

modification of the container's elements.

Key Takeaways
. is the Default: For most scenarios, use first due to its contiguous memory
layout, cache friendliness, and $O(1)$ random access. Use to mitigate reallocation
overhead.

* Ordered vs. Unordered: Choose the appropriate map/set:
° / : Use for guaranteed ordering and $O(\log N)$ complexity.
o / : Use for maximum speed ($O(1)$ average) when
ordering is not needed.
* Iterators are the Core Abstraction: Iterators provide the unified interface for traversal, enabling C++
algorithms to work across diverse data structures.
* |terator Categories Define Capability: The category of a container's iterator (e.g.,, Random Access for
, Bidirectional for ) dictates its performance characteristics and which algorithms it can
support.
¢ Use Range-Based : Prefer the modern range-based loop for simple container traversal, as it's
cleaner and safer than manual iterator management.
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Exercises
1. Vector Performance Trade-Off: Create a

o Task: Use a loop to call 100,000 times. Print the vector's and
at three key points: after 1 element, after 10 elements, and after the final element. Explain what
represents and how it minimizes reallocation cost.
© Hint: The vector's capacity grows exponentially (often doubles) to avoid resizing on every single

insertion.
2. Ordered vs. Unordered Lookup: Create both a and a
. Insert 10,000 unique elements into each.
o Task: Time the lookup process ( ) for a key that exists and one that doesn't. Comment

on the complexity difference ($O(\log N)$ vs. $O(1)$ average) and why the unordered map is
generally faster.

© Hint: You can use to time the operations (Chapter 19).
3. List vs. Vector Insertion: Create a and a , both populated with
10 elements.

© Task: Measure the time taken to insert a new element at the beginning of both containers
( for the vector, for the list). Explain why the
list is dramatically faster.

© Hint: Vector requires shifting all existing elements for a front insertion ($O(N)$), while list only
needs to redirect pointers ($0(1)$).

4. Iterator Category Constraint: Write a function that takes two iterators and and is designed

to sort the range.

© Task: Attempt to call the function with iterators from a (Bidirectional) and then with
iterators from a (Random Access). Explain why can only work
efficiently, or at all, with Random Access iterators.

© Hint: Efficient sorting algorithms require the ability to jump around in memory, which is only
possible with Random Access iterators.

18. The Standard Algorithms Library and Ranges (C++20)

The C++ Standard Library's greatest strength lies in its separation of concerns: containers (data structures,
Chapter 17) and algorithms (logic). This separation is possible because all algorithms operate purely on
iterators. This chapter explores the traditional algorithms library and the modern, expressive Ranges library
introduced in C++20, which brings a LINQ-like fluency to C++.

18.1 The Power of and

The Standard Template Library (STL) provides over 100 algorithms that replace common, error-prone manual
loops. Using these standard algorithms often results in faster, more readable, and bug-free code compared to

writing custom loops.
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The core algorithms are found in two headers:

1. : Contains most general-purpose operations like sorting, searching, transforming, and
copying.

2. : Contains algorithms designed for numerical operations, like accumulation and inner
products.

The Iterator-Based Contract

Nearly all standard algorithms follow the same signature pattern: they take a pair of iterators defining the
range of elements to operate on:

The range is half-open, meaning it includes the element pointed to by but excludes the
element pointed to by

18.2 Common Algorithms: Search, Sort, Transform, Accumulate

Using algorithms makes code intent clear and concise.

Sorting and Searching ( )
. : Sorts the elements in the range. Requires Random Access Iterators (e.g.,
, ). $O(N \log N)$ complexity.
. : Returns an iterator to the first occurrence of in the range, or

the iterator if not found. $O(N)$ complexity.

Transformation and Modification ( )

o : Applies a unary
operation ( ) to every element in the input range and stores the result in the output range,
starting at

. : Copies elements from one range to another.

Numerical Operations ( )
o : Computes the sum (or applies a

custom binary operation) of all elements in the range, starting with

void demonstrate_algorithms() {
<int> nums = {5, 2, 8, 1};
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// 1. Sort
std::sort(nums.begin(), nums.end()); // nums is now {1, 2, 5, 8}

// 2. Find
auto it = std::find(nums.begin(), nums.end(), 5);
if (it !'= nums.end()) {

std::cout << "Found 5 at index: "
"\n";

}

// 3. Accumulate (Initial value 0)
int sum = std::accumulate(nums.begin(), nums.end(), 9);
std::cout << "Sum: " << sum << "\n"; // Output: 16

18.3 Using Lambdas and Function Objects with Algorithms

2025-10-03

<< std::distance(nums.begin(), it) <<

Many algorithms are customizable, allowing you to pass your own logic (known as a callable) to define the

comparison, transformation, or predicate rules. These callables can be function pointers, function objects

(functors), or, most commonly in modern C++, lambda expressions (Chapter 14).

Predicates and Custom Comparisons

Algorithms like and use predicates (callables that return a )-
. : Uses the comparator to define the ordering.
. : Returns an iterator to the first element for which the

predicate returns

// 1. Custom Sort using a Lambda
std::vector<std::string> words = {"apple"”, "fig", "banana"};

// Sort by string length (short to long)
std::sort(words.begin(), words.end(),
[J(const std::string& a, const std::string& b) {
return a.length() < b.length();
3

// words is now {"fig", "apple", "banana"}

// 2. Find If using a Lambda
auto it_long = std::find_if(words.begin(), words.end(),
[J(const std::string& s) {
return s.length() > 5; // Predicate: Is length greater than 5?
1)

// it _long points to "banana"

// 3. Transform using a Lambda
std::vector<int> output(3);
std::transform(words.begin(), words.end(), output.begin(),
[J(const std::string& s) {
return s.length(); // Operation: Convert string to its length
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9 E

This expressive power, enabled by lambdas, is what makes C++ data processing look similar to C#'s LINQ.

18.4 Introduction to Ranges (C++20): Views and Adaptors

The Ranges library (header , C++20) modernizes the STL by operating directly on the container (the
range) instead of manual iterator pairs. This dramatically simplifies syntax and enables composability.

From lterators to Ranges

In the traditional STL, every operation requires specifying . Ranges allow you to pass the
container c directly.

Operation Traditional STL C++20 Ranges

Sorting

Finding

Views and Lazy Evaluation

The core power of Ranges comes from Views. A View is a lightweight, non-owning range adaptor that
provides a new perspective on an existing container without copying or modifying the underlying data.

* Views are Lazy: Transformations are not executed until you actually iterate over the view (deferred
execution, like C# LINQ).
* Views are Composable: They can be chained together using the pipe operator (|).

Common views include:

. : Selects elements based on a predicate.
. : Applies a function to each element.
. : Traverses the range backward.

18.5 The Pipelining of Algorithms

Ranges enable a functional, fluent style of programming using the pipe operator (|), making multi-step data
processing clear and readable—a strong parallel to C#'s LINQ method chaining.

void demonstrate_ranges {
<int> numbers = {1, , 3, , 5, s 7};
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auto result view = numbers
| siviews: :filter([](int n) {

return n % 1= 9;
})
| ::views::transform([](int n) {
return n * n;
1)

for (int n : result view) {

<< n << g

Pipelining dramatically improves code quality by separating concerns and making the flow of data
transformations highly visible. When moving data between threads or when memory is limited, the lazy nature

of views is a major performance and memory advantage.

Key Takeaways

* Algorithms = Logic + Iterators: C++ algorithms abstract common operations over any container that
provides the necessary iterator category (Chapter 17).

* Two Core Headers: Use for general sequence operations and for
mathematical reductions.

® Custom Logic with Lambdas: Use lambdas extensively to provide custom predicates ( )
comparators ( ), and transformations ( ) to standard algorithms.

* Ranges are the Modern STL (C++20): The Ranges library simplifies algorithm syntax by operating on
the container directly, replacing verbose iterator pairs.

* Pipelining with Views: Ranges introduce Views, which are lazy, composable, and non-mutating
transformations. The pipe operator (|) allows you to chain multiple operations fluently, offering C++ a
powerful, LINQ-like style.

Exercises
1. Lambda Predicate with : Create a
© Task: Use and a lambda to count how many elements in the vector are greater
than $10.0$ and less than $20.0$.
© Hint: The lambda predicate should take a argument and return a
2. Using : Create a containing numbers from 1 to 5.
o Task: Use to compute the square of each element and store the result in a new
vector.
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© Hint: You need to declare the new vector first (pre-sized or empty) and use the iterator
of the new vector as the output iterator.

3. Basic Range View: Create a of names.
o Task: Use to create a view that iterates over the names backward. Print
the names using a range-based loop on the view.

© Hint: The expression will look like

4. Range Pipelining (LINQ-style): Use the from Exercise 2 (1 to 5).

o Task: Create a single pipeline that first filters the numbers to keep only the even ones, then
transforms the remaining numbers by multiplying them by 10, and finally prints the result using
a range-based loop.

© Hint: Chain and using the | operator. The
expected output should be

19. Introduction to Concurrency

Concurrency in C++ involves executing multiple instruction sequences (threads) potentially at the same time.
Unlike C#, which runs in a managed environment with a sophisticated memory model, C++ concurrency
operates at the OS and hardware level. This grants high performance but places a significant responsibility on
the programmer to manage shared resources and prevent race conditions.

19.1 The C++ Memory Model and Data Races

Before synchronizing, you must understand the primary danger of multithreading in C++: the Data Race.

The C++ Memory Model

The C++ Memory Model, standardized in C++11, defines the rules for how threads interact with memory. It
specifies what optimization compilers and hardware can perform and what guarantees they must provide
regarding memory visibility.

The key takeaway is that without explicit synchronization, the compiler is free to assume code runs
sequentially within a single thread. This can lead to unexpected behavior when memory is shared.

The Data Race: Undefined Behavior
A Data Race occurs when:

1. Two or more threads access the same memory location concurrently.
2. At least one of the accesses is a write operation.
3. The threads are not using any explicit synchronization mechanism (like a mutex) to control access.

Crucial Warning: If your C++ program contains a data race, the behavior of the entire program is Undefined
Behavior (UB). UB means the program might crash, produce incorrect results, or appear to work fine in
development but fail unpredictably in production. This is much more severe than simple race conditions in
managed code.
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19.2 The Basics

The header provides the class for managing execution threads.

Thread Creation

A thread is created by constructing a object and passing the function (or any callable object like

a lambda) that the thread should execute.

void worker function(int {
<< "Worker thread " << id << " starting...\n";

// Simulate work
::this_thread: :sleep_for( ::chrono::milliseconds( ));
<< "Worker thread " << id << " finished.\n";

void launch_thread {
// Thread is created and immediately starts executing worker_function(1)
::thread t1 5

// ... main thread continues execution ...

// CRITICAL: Must join or detach before t1 goes out of scope
tl.join();

Joining vs. Detaching (Mandatory Cleanup)

Every object must be explicitly dealt with before it is destroyed. Failing to do so results in a
program crash (calling ).
1. : Blocks the calling thread (e.g., the main thread) until thread t has finished execution. This is
the safest and most common option
2. : Separates the execution thread from the object. The execution thread
continues to run in the background (a "daemon" thread), and the operating system handles its
resources upon completion. The object becomes unjoinable.
19.3 Synchronization Primitives: and Locks
The (mutual exclusion) is the fundamental tool for synchronizing access to shared data and

avoiding data races. It allows only one thread to hold the lock at any given time.

A Critical Section is the block of code that accesses shared resources and must be protected by a mutex.

Basic Mutex Usage (Manual Locking)
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int shared data = 0;
::mutex data_mutex; // The mutex object

void unsafe_increment {
// No lock - DATA RACE!
shared_data++;

void safe_increment {
data_mutex.lock(); // 1. Acquire the lock (blocks until available)

// Critical Section
shared_data++;

data mutex.unlock(); // 2. Release the lock

Danger of Manual Locking: If the critical section throws an exception (or has multiple exit points), the
call might be skipped, leading to a deadlock where the mutex is never released. For safe, robust
C++, manual locking should be avoided.

19.4 The and for Asynchronous Results
Often, a thread is launched to perform a calculation whose result is needed later. and
(or the helper ) provide a type-safe mechanism to retrieve this result, similar to
in C#.
and
. : Used by the worker thread to asynchronously set a result or an exception.
. : Used by the calling thread to retrieve the result set by the
The Helper
is the easiest way to perform a function call asynchronously and automatically manage the
/ setup. It acts much like C#'s
long long calculate_sum(int {
long long sum = 0;
for (int 1 = 1; i <= max_val; ++i) { sum += i; }

return sum;

void demonstrate_async {
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// Launch the calculation asynchronously. The return value is a future<long
long>.
std::future<long long> future_result =
std::async(std::launch::async, calculate_sum, 10000);

// Main thread can continue doing other work...

std::cout << "Main thread continuing...\n";

// Block and wait for the result (or use future result.wait for() for non-
blocking check)
long long result = future result.get();

std::cout << "Asynchronous result: << result << "\n";

}
The call waits (blocks) until the result is available and retrieves it. It can only be called once per
future.
19.5 Using Concurrency with RAII: and
To prevent deadlocks from forgotten calls, C++ mandates the use of RAIl (Resource Acquisition Is

Initialization) wrappers for synchronization. These wrappers acquire the lock in their constructor and
guarantee its release in their destructor, even if an exception is thrown.

(Simple and Safe)

is the simplest and preferred RAIl wrapper for mutual exclusion. It acquires
the lock immediately in its constructor and holds it for the scope of the object. It cannot be
unlocked early or moved.

// Correct, RAII-safe way to use the mutex

void safe_increment_raii(std::mutex& m, int& data) {
// Lock is acquired.
std::lock_guard<std: :mutex> lock(m);

// Critical Section: If an exception is thrown here,
// the 'lock' destructor is still called, releasing the mutex.

data++;

// Lock is automatically released when 'lock' goes out of scope.

(Flexible and Advanced)

is a more flexible RAIl wrapper. It is more expensive than
but supports advanced features:
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1. Deferred Locking: You can construct the lock object without acquiring the lock immediately

( )-

2. Explicit Control: You can call and manually on the object, but still
guarantee release via the destructor.

3. Transferability: objects can be moved (e.g., passed to functions).

4. Condition Variables: It is required for use with , which handles complex

waiting/notification patterns.

void flexible locking {

::unique_lockx ::mutex> lock 5

if ( ) {
lock.lock();

Key Takeaways

¢ Data Race = UB: The primary rule of C++ concurrency is to NEVER allow a data race. Any
simultaneous read/write to shared, unsynchronized memory leads to Undefined Behavior.
* Thread Cleanup is Mandatory: Every object must be explicitly handled with either
(wait for completion) or (run independently) before it is destroyed.

¢ RAIl Locks are Non-Negotiable: Avoid manual and . Use
for simple scope-based critical sections and when advanced

features like deferred locking or condition variables are needed.
o for Results: Use (which returns a ) as the high-level way to

launch asynchronous operations and safely retrieve the result non-blockingly, similar to C#'s

Exercises

1. Thread Join vs. Detach: Write a short program that launches two threads: t1 and 2. Thread t1 should
print a message every 100ms for 5 iterations. Thread t2 should do the same.

o Task: Set and . Observe the output. Explain the lifetime difference and
why detaching ©2 means the main program might exit before t2 finishes its last message.

© Hint: The program will wait for 1 but not

2. Data Race Demonstration: Create a simple integer initialized to 0. Create two threads, where
each thread increments the counter $10,000$ times without using any synchronization.

o Task: Run the program and print the final value of the counter. Explain why the result is almost
certainly not $20,000$ and how this demonstrates a data race.
© Hint: The increment operation ( ) is not atomic; it involves read, modify, and write

steps which can interleave.
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3. RAIl Mutex Fix: Take the data race code from Exercise 2.

© Task: Introduce a and use a inside the increment function to
protect the counter access. Verify that the final result is exactly $20,000$.

© Hint: The object must be constructed inside the function that accesses the
shared data.

4. Asynchronous Summation: Write a function that calculates the
sum of a number range.

© Task: Use two separate calls to to calculate the sum of the range 1 to 50,000 and the
range 50,001 to 100,000 concurrently. Then, use on both futures and add the results to
find the total sum.
© Hint: The total sum should be $5,000,050,000%. The call to should use
to ensure true parallel execution.

Where to go Next

* Part I:: The C++ Ecosystem and Foundation: This section establishes the philosophical and technical
underpinnings of C++, focusing on compilation, linking, and the modern modularization system.

* Part Il: Core Constructs, Classes, and Basic 1/0: Here, we cover the essential C++ syntax, focusing on
differences in data types, scoping, correctness, and the function of lvalue references.

¢ Part lll: The C++ Memory Model and Resource Management: The most critical section, which
deeply explores raw pointers, value categories, move semantics, and the indispensable role of smart
pointers and the **RAII** idiom.

* Part IV: Classical OOP, Safety, and Type Manipulation: This part addresses familiar object-oriented
concepts like inheritance and polymorphism, emphasizing C++'s rules for **exception safety** and
type-safe casting.

* Part V: Genericity, Modern Idioms, and The Standard Library: Finally, we explore the advanced
capabilities of templates, C++20 Concepts, lambda expressions, and the power of the Standard
Library containers and **Ranges** for highly generic and expressive code.

¢ Appendix: Supplementary materials including coding style guidelines, compiler flags, and further
reading.
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